Variational Reasoning for Question Answering with Knowledge Graph

被引:0
|
作者
Zhang, Yuyu [1 ]
Dai, Hanjun [1 ]
Kozareva, Zornitsa [2 ]
Smola, Alexander J. [2 ]
Song, Le [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Amazon Web Serv, Seattle, WA USA
来源
THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2018年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts. However, it is challenging to build QA systems which can learn to reason over knowledge graphs based on question-answer pairs alone. First, when people ask questions, their expressions are noisy (for example, typos in texts, or variations in pronunciations), which is non-trivial for the QA system to match those mentioned entities to the knowledge graph. Second, many questions require multi-hop logic reasoning over the knowledge graph to retrieve the answers. To address these challenges, we propose a novel and unified deep learning architecture, and an end-to-end variational learning algorithm which can handle noise in questions, and learn multi-hop reasoning simultaneously. Our method achieves state-of-the-art performance on a recent benchmark dataset in the literature. We also derive a series of new benchmark datasets, including questions for multi-hop reasoning, questions paraphrased by neural translation model, and questions in human voice. Our method yields very promising results on all these challenging datasets.
引用
收藏
页码:6069 / 6076
页数:8
相关论文
共 50 条
  • [1] Graph Reasoning Transformers for Knowledge -Aware Question Answering
    Zhao, Ruilin
    Zhao, Feng
    Hu, Liang
    Xu, Guandong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17, 2024, : 19652 - 19660
  • [2] Temporal knowledge graph question answering via subgraph reasoning
    Chen, Ziyang
    Zhao, Xiang
    Liao, Jinzhi
    Li, Xinyi
    Kanoulas, Evangelos
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [3] Dynamic Reasoning with Language Model and Knowledge Graph for Question Answering
    Lu, Yujie
    Wu, Dean
    Zhang, Yuhong
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT IV, 2024, 14807 : 441 - 455
  • [4] Multi-Hop Reasoning for Question Answering with Knowledge Graph
    Zhang, Jiayuan
    Cai, Yifei
    Zhang, Qian
    Cao, Zehao
    Cheng, Zhenrong
    Li, Dongmei
    Meng, Xianghao
    2021 IEEE/ACIS 20TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2021-SUMMER), 2021, : 121 - 125
  • [5] Retrieval-Augmented Knowledge Graph Reasoning for Commonsense Question Answering
    Sha, Yuchen
    Feng, Yujian
    He, Miao
    Liu, Shangdong
    Ji, Yimu
    MATHEMATICS, 2023, 11 (15)
  • [6] Meta-path reasoning of knowledge graph for commonsense question answering
    Zhang, Miao
    He, Tingting
    Dong, Ming
    FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (01)
  • [7] A Dynamic Graph Reasoning Model with an Auxiliary Task for Knowledge Base Question Answering
    Wu, Zhichao
    Tian, Xuan
    ELECTRONICS, 2024, 13 (24):
  • [8] Simulate Human Thinking: Cognitive Knowledge Graph Reasoning for Complex Question Answering
    Zhao, Hong
    Fu, Yao
    Jiang, Weihao
    Pu, Shiliang
    Cai, Xiaoyu
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 522 - 534
  • [9] Knowledge Graph Question-Answering Based on Link Reasoning for Electrical Equipment
    Xin, Rui
    Zhang, Pengfei
    Chen, Xi
    Peng, Jiao
    Liu, Haifeng
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 594 - 600
  • [10] Graph Reasoning for Question Answering with Triplet Retrieval
    Li, Shiyang
    Gao, Yifan
    Jiang, Haoming
    Yin, Qingyu
    Li, Zheng
    Yan, Xifeng
    Zhang, Chao
    Yin, Bing
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 3366 - 3375