Inconsistent models of arithmetic .1. Finite models

被引:30
作者
Priest, G
机构
[1] Department of Philosophy, University of Queensland, Brisbane
关键词
Model Theory; Paraconsistent Logic; Finite Model; Order Arithmetic; Inconsistent Model;
D O I
10.1023/A:1004251506208
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
The paper concerns interpretations of the paraconsistent logic LP which model theories properly containing all the sentences of first order arithmetic. The paper demonstrates the existence of such models and provides a complete taxonomy of the finite ones.
引用
收藏
页码:223 / 235
页数:13
相关论文
共 11 条
  • [1] [Anonymous], 1991, STUD LOGICA, DOI DOI 10.1007/BF00370190
  • [2] [Anonymous], B SECTION LOGIC
  • [3] BOOLOS G, 1984, COMPUTABILITY LOGIC
  • [4] DUNN JM, 1979, STUDIA LOGICA, V38, P149
  • [5] Kaye R., 1991, MODELS PEANO ARITHME
  • [6] INCONSISTENT MODELS FOR RELEVANT ARITHMETICS
    MEYER, RK
    MORTENSEN, C
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (03) : 917 - 929
  • [7] MORTENSEN C., 1995, INCONSISTENT MATH
  • [8] IS ARITHMETIC CONSISTENT
    PRIEST, G
    [J]. MIND, 1994, 103 (411) : 337 - 349
  • [9] Priest G., 1989, PARACONSISTENT LOGIC
  • [10] Priest G., 1987, CONTRADICTION