Lq-theory of the Kelvin-Voigt equations in bounded domains

被引:14
作者
Damazio, Pedro D. [1 ]
Manholi, Patricia [2 ]
Silvestre, Ana L. [3 ,4 ]
机构
[1] UFPR, Ctr Politecn, Dept Math, Setor Ciencias Exatas, CP 19081, BR-81531990 Curitiba, Parana, Brazil
[2] Univ Tecnol Fed Parana UTFPR, Dept Acad Matemat, Ave Sete Setembro 3165, BR-80230901 Curitiba, Parana, Brazil
[3] Univ Lisbon, Inst Super Tecn, CEMAT, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
[4] Univ Lisbon, Inst Super Tecn, Dept Math, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal
关键词
Kelvin-Voigt equations; Bounded domain; Weak solutions; Strong solutions; Stokes operator; Semigroup theory; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; OPERATOR; ATTRACTORS;
D O I
10.1016/j.jde.2016.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the well-posedness of the Kelvin-Voigt equations in spaces based on L-q(Omega), 1 < q < infinity, where Omega is a bounded domain of R-d, d >= 2. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:8242 / 8260
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[2]  
[Anonymous], 1966, INT C MATHEMATICIANS
[3]   ALGEBRAIC L2 DECAY FOR NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1990, 165 (3-4) :189-227
[4]  
Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
[5]   ON EXISTENCE OF A CLASSICAL SOLUTION TO A GENERALIZED KELVIN-VOIGT MODEL [J].
Bulicek, Miroslav ;
Kaplicky, Petr ;
Steinhauer, Mark .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 262 (01) :11-33
[6]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[7]   Remarks on uniform attractors for the 3D non-autonomous Navier-Stokes-Voight equations [J].
Dou, Yiwen ;
Yang, Xinguang ;
Qin, Yuming .
BOUNDARY VALUE PROBLEMS, 2011, :1-11
[8]   GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS [J].
FARWIG, R ;
SOHR, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :607-643
[9]   Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (01) :127-150
[10]   A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data [J].
Farwig, Reinhard ;
Galdi, Giovanni P. ;
Sohr, Hermann .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :423-444