Perturbation analysis of generalized inverses of linear operators in Banach spaces

被引:16
作者
Huang, QL [1 ]
Ma, JP
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Yangzhou Univ, Coll Math, Yangzhou 225002, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized inverse; Moore-Penrose inverse; subimmersion;
D O I
10.1016/j.laa.2004.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-1, X-2 be two Banach spaces and T : X-1 --> X-2 be a bounded linear operator with a bounded generalized inverse T+. We study the perturbation problem of generalized inverse T+ and provide two new stability characterizations of generalized inverse. We also give a continuity characterization of Moore-Penrose inverse in Hilbert spaces. Our results are new even in the case of matrices. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 14 条
[1]  
Abraham R., 2012, Manifolds, tensor analysis, and applications, V75
[2]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[3]   Perturbation analysis for the operator equation Tx=b in Banach spaces [J].
Chen, GL ;
Xue, YF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) :107-125
[4]   Perturbation analysis of the least squares solution in Hilbert spaces [J].
Chen, GL ;
Wei, MS ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 :69-80
[5]  
Ding J, 1997, LINEAR ALGEBRA APPL, V262, P229
[6]   ON THE PERTURBATION OF THE LEAST-SQUARES SOLUTIONS IN HILBERT-SPACES [J].
DING, J ;
HUANG, LJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 212 :487-500
[7]  
Kato T., 1984, PERTURBATION THEORY
[8]   Rank theorems of operators between Banach spaces [J].
Ma, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (01) :1-5
[9]  
[马吉溥 Ma Jifu], 2003, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V24, P669
[10]  
MA JP, 1990, SCI CHINA SER A, V33, P1294