CRITICAL POINTS OF AMBROSIO-TORTORELLI CONVERGE TO CRITICAL POINTS OF MUMFORD-SHAH IN THE ONE-DIMENSIONAL DIRICHLET CASE

被引:15
作者
Francfort, Gilles A. [1 ]
Le, Nam Q. [2 ]
Serfaty, Sylvia [2 ]
机构
[1] Univ Paris 13, LPMTM, F-93430 Villetaneuse, France
[2] Courant Inst Math Sci, New York, NY 10012 USA
关键词
Mumford-Shah functional; Ambrosio-Tortorelli functional; Gamma-convergence; critical points; brittle fracture; VARIATIONAL-PROBLEMS; BRITTLE-FRACTURE; APPROXIMATION;
D O I
10.1051/cocv:2008041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
引用
收藏
页码:576 / 598
页数:23
相关论文
共 18 条
[11]   Revisiting brittle fracture as an energy minimization problem [J].
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (08) :1319-1342
[12]   Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory [J].
Hutchinson, JE ;
Tonegawa, Y .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) :49-84
[13]  
MODICA L., 1977, Boll. Un. Mat. Ital., V14, P526
[14]   OPTIMAL APPROXIMATIONS BY PIECEWISE SMOOTH FUNCTIONS AND ASSOCIATED VARIATIONAL-PROBLEMS [J].
MUMFORD, D ;
SHAH, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :577-685
[15]  
SANDIER E, 2007, PROGR NONLINEAR DIFF, V70
[16]  
Tonegawa Y, 2005, ANN SCUOLA NORM-SCI, V4, P487
[17]   Phase field model with a variable chemical potential [J].
Tonegawa, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :993-1019
[18]  
WITTMAN T., 2004, SIAM NEWS SEP, V37