CRITICAL POINTS OF AMBROSIO-TORTORELLI CONVERGE TO CRITICAL POINTS OF MUMFORD-SHAH IN THE ONE-DIMENSIONAL DIRICHLET CASE

被引:15
作者
Francfort, Gilles A. [1 ]
Le, Nam Q. [2 ]
Serfaty, Sylvia [2 ]
机构
[1] Univ Paris 13, LPMTM, F-93430 Villetaneuse, France
[2] Courant Inst Math Sci, New York, NY 10012 USA
关键词
Mumford-Shah functional; Ambrosio-Tortorelli functional; Gamma-convergence; critical points; brittle fracture; VARIATIONAL-PROBLEMS; BRITTLE-FRACTURE; APPROXIMATION;
D O I
10.1051/cocv:2008041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
引用
收藏
页码:576 / 598
页数:23
相关论文
共 18 条
[1]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[2]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[3]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[4]  
[Anonymous], FUNCTIONS BOUNDED VA
[5]  
[Anonymous], 1986, APPL LIE GROUPS DIFF
[6]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and Their Applications, V13
[7]  
Bourdin B, 2007, INTERFACE FREE BOUND, V9, P411
[8]  
Braides A., 2002, OXFORD LECT SERIES M, V22
[9]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218
[10]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions