Catalytic cracking of biomass pyrolysis tar over char-supported catalysts

被引:227
作者
Guo, Feiqiang [1 ]
Li, Xiaolei [1 ]
Liu, Yuan [1 ]
Peng, Kuangye [1 ]
Guo, Chenglong [1 ]
Rao, Zhonghao [1 ]
机构
[1] China Univ Min & Technol, Sch Elect & Power Engn, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Biomass; Tar; Rice husk char; Catalytic reforming; Metallic catalyst; RICE HUSK CHAR; STEAM GASIFICATION; CO-GASIFICATION; IRON CATALYSTS; SURFACE-AREA; HYDROGEN; REMOVAL; TEMPERATURE; PRODUCTS; ALKALI;
D O I
10.1016/j.enconman.2018.04.094
中图分类号
O414.1 [热力学];
学科分类号
摘要
The work aims to investigate an effective method of catalytic reforming of tar during biomass high-temperature pyrolysis using rice husk char (RHC) and metal impregnated (Fe, Cu and K) char in a dual-stage reactor. The char and char-supported catalysts exhibited high catalytic performance, in terms of the high tar conversion efficiencies of 77.1% for RHC, 82.7% for K-RHC, 92.6% for Fe-RHC and 90.6% for Cu-RHC at 800 degrees C. Moreover, K-RHC and Cu-RHC catalysts after three cycles still exhibited high activity for tar removal. The catalytic tar conversion by char or char-supported catalysts contributes to improving the yield of syngas, particularly the combustible gases of H-2, CO and CH4, corresponding to the syngas yield increasing from 196.6 mL/g for thermal reforming to 269.6 mL/g for K-RHC, 274.9 mL/g for Cu-RHC and 342.7 mL/g for Fe-RHC at 800 degrees C, respectively. The results from GC-MS analysis illustrated that the addition of char and char-supported catalysts promoted the transformation of larger polycyclic aromatic hydrocarbons into lighter tar compounds, leading to an increase in the proportion of single-ring tars. XRD results indicated that the most active phases of the fresh K-RHC, Cu-RHC and Fe-RHC for tar cracking and reforming were KCl, Cu and Fe, respectively. Textural characterization showed the addition of Fe and Cu was in favor of producing highly porous carbon materials and led to the increase in specific surface area and total pore volume.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 58 条
[1]   Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts [J].
Artetxe, Maite ;
Alvarez, Jon ;
Nahil, Mohamad A. ;
Olazar, Martin ;
Williams, Paul T. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 136 :119-126
[2]   Influence of temperature and alumina catalyst on pyrolysis of corncob [J].
Ates, Funda ;
Isikdag, M. Asli .
FUEL, 2009, 88 (10) :1991-1997
[3]   Co-gasification of black liquor and pyrolysis oil at high temperature: Part 2. Fuel conversion [J].
Bach-Oller, Albert ;
Kirtania, Kawnish ;
Furusjo, Erik ;
Umeki, Kentaro .
FUEL, 2017, 197 :240-247
[4]   Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes [J].
Cazetta, Andre L. ;
Pezoti, Osvaldo ;
Bedin, Karen C. ;
Silva, Tais L. ;
Paesano Junior, Andrea ;
Asefa, Tewodros ;
Almeida, Vitor C. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03) :1058-1068
[5]   Application studies of activated carbon derived from rice husks produced by chemical-thermal process-A review [J].
Chen, Yue ;
Zhu, Yanchao ;
Wang, Zichen ;
Li, Ying ;
Wang, Lili ;
Ding, Lili ;
Gao, Xiaoyan ;
Ma, Yuejia ;
Guo, Yupeng .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2011, 163 (01) :39-52
[6]   Biomass Gasification with Catalytic Tar Reforming: A Model Study into Activity Enhancement of Calcium- and Magnesium-Oxide-Based Catalytic Materials by Incorporation of Iron [J].
Di Felice, L. ;
Courson, C. ;
Niznansky, D. ;
Foscolo, P. U. ;
Kiennemann, A. .
ENERGY & FUELS, 2010, 24 (07) :4034-4045
[7]   Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts [J].
Duman, Gozde ;
Watanabe, Taichi ;
Uddin, Md. Azhar ;
Yanik, Jale .
FUEL PROCESSING TECHNOLOGY, 2014, 126 :276-283
[8]   Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass [J].
Eom, In-Yong ;
Kim, Jae-Young ;
Kim, Tae-Seung ;
Lee, Soo-Min ;
Choi, Donha ;
Choi, In-Gyu ;
Choi, Joon-Weon .
BIORESOURCE TECHNOLOGY, 2012, 104 :687-694
[9]   Pyrolysis products from different biomasses: application to the thermal cracking of tar [J].
Fagbemi, L ;
Khezami, L ;
Capart, R .
APPLIED ENERGY, 2001, 69 (04) :293-306
[10]   Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas-liquid-solid product properties [J].
Feng, Dongdong ;
Zhang, Yu ;
Zhao, Yijun ;
Sun, Shaozeng .
ENERGY, 2018, 152 :166-177