Stable phase field approximations of anisotropic solidification

被引:20
作者
Barrett, John W. [1 ]
Garcke, Harald [2 ]
Nuernberg, Robert [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词
phase field models; parabolic partial differential equations; Stefan problem; anisotropy; Allen-Cahn equation; viscous Cahn-Hilliard equation; crystal growth; finite element approximation; FINITE-ELEMENT APPROXIMATION; GEOMETRIC EVOLUTION-EQUATIONS; CAHN-HILLIARD EQUATION; VOID ELECTROMIGRATION; MULTIGRID METHODS; CRYSTAL-GROWTH; MODELS; DIMENSIONS; ALGORITHM; KINETICS;
D O I
10.1093/imanum/drt044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce unconditionally stable finite element approximations for a phase field model for solidification, which takes highly anisotropic surface energy and kinetic effects into account. We hence approximate Stefan problems with the anisotropic Gibbs-Thomson law with kinetic undercooling, and quasistatic variants thereof. The phase field model is given by. vw(t) + lambda rho(phi)phi(t) = del . (b(phi)del w), c(Psi) a/alpha rho(phi)w = epsilon rho/alpha mu(del phi)phi(t) - epsilon del . A'(del phi) + epsilon(-1)Psi'(phi) subject to initial and boundary conditions for the phase variable. and the temperature approximation w. Here, epsilon > 0 is the interfacial parameter, Psi is a double-well potential, c(Psi) = integral(1)(-1) root 2 Psi(s) ds. rho is a shape function and A(del phi) = 1/2 vertical bar gamma(del phi)vertical bar(2), where gamma is the anisotropic density function. Moreover, v >= 0, lambda > 0, alpha > 0, alpha > 0 and rho >= 0 are physical parameters from the Stefan problem, while b and mu are coefficient functions, which also relate to the sharp interface problem. On introducing the novel fully practical finite element approximations for the anisotropic phase field model, we prove their stability and demonstrate their applicability with some numerical results.
引用
收藏
页码:1289 / 1327
页数:39
相关论文
共 53 条
[1]   Algorithm 837: AMD, an approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Enseeiht-Irit ;
Davis, TA ;
Duff, IS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (03) :381-388
[2]  
[Anonymous], 2007, DOMAIN DECOMPOSITION
[3]  
[Anonymous], 2013, Physical Foundations of Materials Science, DOI DOI 10.1007/978-3-662-09291-0
[4]  
[Anonymous], 1998, FUNDAMENTALS SOLIDIF
[5]   Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration [J].
Banas, L'ubomir ;
Nurnberg, Robert .
JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (02) :202-232
[6]   A multigrid method for the Cahn-Hilliard equation with obstacle potential [J].
Banas, L'ubomir ;
Nuernberg, Robert .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (02) :290-303
[7]   A variational formulation of anisotropic geometric evolution equations in higher dimensions [J].
Barrett, John W. ;
Garcke, Harald ;
Nurnberg, Robert .
NUMERISCHE MATHEMATIK, 2008, 109 (01) :1-44
[8]   Numerical approximation of anisotropic geometric evolution equations in the plane [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (02) :292-330
[9]   On the stable discretization of strongly anisotropic phase field models with applications to crystal growth [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (10-11) :719-732
[10]   Numerical computations of faceted pattern formation in snow crystal growth [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
PHYSICAL REVIEW E, 2012, 86 (01)