APPROXIMATE MARGINALIZATION OF UNKNOWN SCATTERING IN QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY

被引:16
|
作者
Pulkkinen, Aki [1 ]
Kolehmainen, Ville [1 ]
Kaipio, Jari P. [1 ,2 ]
Cox, Benjamin T. [3 ]
Arridge, Simon R. [4 ]
Tarvainen, Tanja [1 ,4 ]
机构
[1] Univ Eastern Finland, Dept Appl Phys, Kuopio 70211, Finland
[2] Univ Auckland, Auckland Mail Ctr, Dept Math, Auckland 1142, New Zealand
[3] UCL, Dept Med Phys & Bioengn, London WC1E 6BT, England
[4] UCL, Dept Comp Sci, London WC1E 6BT, England
基金
芬兰科学院;
关键词
Inverse problems; parameter estimation; quantitative photoacoustic tomography; approximation error; uncertainty quantification; numerical methods; OPTICAL-ABSORPTION COEFFICIENT; NEAR-INFRARED SPECTROSCOPY; MEAN RADON-TRANSFORM; MODEL-REDUCTION; THERMOACOUSTIC TOMOGRAPHY; IMAGE-RECONSTRUCTION; INVERSE PROBLEMS; VALUE OPERATOR; DISTRIBUTIONS; SIMULATIONS;
D O I
10.3934/ipi.2014.8.811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantitative photoacoustic tomography is a hybrid imaging method, combining near-infrared optical and ultrasonic imaging. One of the interests of the method is the reconstruction of the optical absorption coefficient within the target. The measurement depends also on the uninteresting but often unknown optical scattering coefficient. In this work, we apply the approximation error method for handling uncertainty related to the unknown scattering and reconstruct the absorption only. This way the number of unknown parameters can be reduced in the inverse problem in comparison to the case of estimating all the unknown parameters. The approximation error approach is evaluated with data simulated using the diffusion approximation and Monte Carlo method. Estimates are inspected in four two-dimensional cases with biologically relevant parameter values. Estimates obtained with the approximation error approach are compared to estimates where both the absorption and scattering coefficient are reconstructed, as well to estimates where the absorption is reconstructed, but the scattering is assumed (incorrect) fixed value. The approximation error approach is found to give better estimates for absorption in comparison to estimates with the conventional measurement error model using fixed scattering. When the true scattering contains stronger variations, improvement of the approximation error method over fixed scattering assumption is more significant.
引用
收藏
页码:811 / 829
页数:19
相关论文
共 50 条
  • [1] Application of diffusion approximation in quantitative photoacoustic tomography in the presence of low-scattering regions
    Hanninen, Niko
    Pulkkinen, Aki
    Leino, Aleksi
    Tarvainen, Tanja
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 250 (250):
  • [2] Quantitative photoacoustic tomography using illuminations from a single direction
    Pulkkinen, Aki
    Cox, Ben T.
    Arridge, Simon R.
    Kaipio, Jari P.
    Tarvainen, Tanja
    JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (03)
  • [3] Bayesian Image Reconstruction in Quantitative Photoacoustic Tomography
    Tarvainen, Tanja
    Pulkkinen, Aki
    Cox, Ben T.
    Kaipio, Jari P.
    Arridge, Simon R.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (12) : 2287 - 2298
  • [4] Image Reconstruction with Reliability Assessment in Quantitative Photoacoustic Tomography
    Hanninen, Niko
    Pulkkinen, Aki
    Tarvainen, Tanja
    JOURNAL OF IMAGING, 2018, 4 (12)
  • [5] Utilising the radiative transfer equation in quantitative photoacoustic tomography
    Tarvainen, Tanja
    Pulkkinen, Aki
    Cox, Ben T.
    Arridge, Simon R.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2017, 2017, 10064
  • [6] Quantitative Photoacoustic Tomography with Piecewise Constant Material Parameters
    Naetar, W.
    Scherzer, O.
    SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (03): : 1755 - 1774
  • [7] Quantitative photoacoustic tomography: modeling and inverse problems
    Tarvainen, Tanja
    Cox, Ben
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29
  • [8] ANALYSIS OF THE LINEARIZED PROBLEM OF QUANTITATIVE PHOTOACOUSTIC TOMOGRAPHY
    Haltmeier, Markus
    Neumann, Lukas
    Linh Nguyen
    Rabanser, Simon
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (01) : 457 - 478
  • [9] A Bayesian approach to spectral quantitative photoacoustic tomography
    Pulkkinen, A.
    Cox, B. T.
    Arridge, S. R.
    Kaipio, J. P.
    Tarvainen, T.
    INVERSE PROBLEMS, 2014, 30 (06)
  • [10] Quantitative Fluorescence Photoacoustic Tomography
    Ren, Kui
    Zhao, Hongkai
    SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (04): : 2404 - 2429