Analytical approximations of the period of a generalized nonlinear van der Pol oscillator

被引:18
作者
Andrianov, Igor V.
van Horssen, Wim T.
机构
[1] Rhein Westfal TH Aachen, Inst Gen Mech, D-52062 Aachen, Germany
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft Inst App Math, NL-2628 CD Delft, Netherlands
关键词
D O I
10.1016/j.jsv.2006.02.006
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper analytical approximations for the period of a generalized nonlinear van der Pol equation will be obtained by using various asymptotic methods. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1099 / 1104
页数:6
相关论文
共 9 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
AWREJCEWICZ J, 1998, ASYMPLOTIC APPROACHE
[3]   Oscillations in an x(2m+2)/(2n+l) potential [J].
Hu, H ;
Xiong, ZG .
JOURNAL OF SOUND AND VIBRATION, 2003, 259 (04) :977-980
[4]   Analysis of non-linear oscillators having non-polynomial elastic terms [J].
Mickens, RE .
JOURNAL OF SOUND AND VIBRATION, 2002, 255 (04) :789-792
[5]   Fourier analysis of a rational harmonic balance approximation for periodic solutions [J].
Mickens, RE ;
Semwogerere, D .
JOURNAL OF SOUND AND VIBRATION, 1996, 195 (03) :528-530
[6]   Oscillators with a generalized power-form elastic term [J].
Pilipchuk, VN .
JOURNAL OF SOUND AND VIBRATION, 2004, 270 (1-2) :470-472
[7]   An explicit form general solution for oscillators with a non-smooth restoring force, x plus sign(x)f(x)=0 [J].
Pilipchuk, VN .
JOURNAL OF SOUND AND VIBRATION, 1999, 226 (04) :795-798
[8]  
Prudnikov A. P., 1986, Integrals and series: special functions
[9]   On the periodic solutions of a generalized non-linear Van der Pol oscillator [J].
Waluya, SB ;
van Horssen, WT .
JOURNAL OF SOUND AND VIBRATION, 2003, 268 (01) :209-215