Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement

被引:5
作者
Chen, Yao [1 ,2 ]
Zhao, Libo [1 ]
Ma, Yintao [1 ]
Yu, Mingzhi [1 ]
Wang, Yanbin [1 ]
Zhang, Ning [3 ]
Wei, Kai [4 ]
Jiang, Zhuangde [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn,Sch Mech Engn, Int Joint Lab Micro Nano Mfg & Measurement Techno, Overseas Expertise Intro Ctr Micro Nano Mfg & Nan, Xian 710049, Peoples R China
[2] Xian Jiaotong Univ Suzhou Inst, Suzhou 215123, Peoples R China
[3] Res Ctr Quantum Sensing, Intelligent Percept Res Inst, Zhejiang Lab, Hangzhou 310000, Peoples R China
[4] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ATOMIC MAGNETOMETER; SHIFT;
D O I
10.1364/BOE.474862
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recording moving magnetoencephalograms (MEGs), in which a person's head can move freely as the brain's magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model. We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension, while our compensation system is only 2 mm in dimension
引用
收藏
页码:5937 / 5951
页数:15
相关论文
共 44 条
[1]   Magnetic field imaging with microfabricated optically-pumped magnetometers [J].
Alem, Orang ;
Mhaskar, Rahul ;
Jimenez-Martinez, Ricardo ;
Sheng, Dong ;
LeBlanc, John ;
Trahms, Lutz ;
Sander, Tilmann ;
Kitching, John ;
Knappe, Svenja .
OPTICS EXPRESS, 2017, 25 (07) :7849-7858
[2]   Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers [J].
Alem, Orang ;
Sander, Tilmann H. ;
Mhaskar, Rahul ;
LeBlanc, John ;
Eswaran, Hari ;
Steinhoff, Uwe ;
Okada, Yoshio ;
Kitching, John ;
Trahms, Lutz ;
Knappe, Svenja .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (12) :4797-4811
[3]   High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation [J].
Allred, JC ;
Lyman, RN ;
Kornack, TW ;
Romalis, MV .
PHYSICAL REVIEW LETTERS, 2002, 89 (13) :130801-130801
[4]   A magnetically shielded room with ultra low residual field and gradient [J].
Altarev, I. ;
Babcock, E. ;
Beck, D. ;
Burghoff, M. ;
Chesnevskaya, S. ;
Chupp, T. ;
Degenkolb, S. ;
Fan, I. ;
Fierlinger, P. ;
Frei, A. ;
Gutsmiedl, E. ;
Knappe-Grueneberg, S. ;
Kuchler, F. ;
Lauer, T. ;
Link, P. ;
Lins, T. ;
Marino, M. ;
McAndrew, J. ;
Niessen, B. ;
Paul, S. ;
Petzoldt, G. ;
Schlaepfer, U. ;
Schnabel, A. ;
Sharma, S. ;
Singh, J. ;
Stoepler, R. ;
Stuiber, S. ;
Sturm, M. ;
Taubenheim, B. ;
Trahms, L. ;
Voigt, J. ;
Zechlau, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (07)
[5]   Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System [J].
Borna, Amir ;
Carter, Tony R. ;
Colombo, Anthony P. ;
Jau, Yuan-Yu ;
McKay, Jim ;
Weisend, Michael ;
Taulu, Samu ;
Stephen, Julia M. ;
Schwindt, Peter D. D. .
PLOS ONE, 2020, 15 (01)
[6]   A 20-channel magnetoencephalography system based on optically pumped magnetometers [J].
Borna, Amir ;
Carter, Tony R. ;
Goldberg, Josh D. ;
Colombo, Anthony P. ;
Jau, Yuan-Yu ;
Berry, Christopher ;
Mckay, Jim ;
Stephen, Julia ;
Weisend, Michael ;
Schwindt, Peter D. D. .
PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (23) :8909-8923
[7]   Moving magnetoencephalography towards real-world applications with a wearable system [J].
Boto, Elena ;
Holmes, Niall ;
Leggett, James ;
Roberts, Gillian ;
Shah, Vishal ;
Meyer, Sofie S. ;
Munoz, Leonardo Duque ;
Mullinger, Karen J. ;
Tierney, Tim M. ;
Bestmann, Sven ;
Barnes, Gareth R. ;
Bowtell, Richard ;
Brookes, Matthew J. .
NATURE, 2018, 555 (7698) :657-+
[8]   New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions [J].
Brown, J. M. ;
Smullin, S. J. ;
Kornack, T. W. ;
Romalis, M. V. .
PHYSICAL REVIEW LETTERS, 2010, 105 (15)
[9]   Single beam Cs-Ne SERF atomic magnetometer with the laser power differential method [J].
Chen, Yao ;
Zhao, Libo ;
Zhang, Ning ;
Yu, Mingzhi ;
Ma, Yintao ;
Han, Xiangguang ;
Zhao, Man ;
Lin, Qijing ;
Yang, Ping ;
Jiang, Zhuangde .
OPTICS EXPRESS, 2022, 30 (10) :16541-16552
[10]   Spin-exchange collision mixing of the K and Rb ac Stark shifts [J].
Chen, Yao ;
Quan, Wei ;
Duan, Lihong ;
Lu, Yan ;
Jiang, Liwei ;
Fang, Jiancheng .
PHYSICAL REVIEW A, 2016, 94 (05)