Some New Classes of Quantum MDS Codes From Constacyclic Codes

被引:62
作者
Zhang, Tao [1 ]
Ge, Gennian [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum MDS codes; constacyclic codes; Hermitian construction; cyclotomic cosets;
D O I
10.1109/TIT.2015.2450235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum maximum-distance-separable (MDS) codes form an important family of quantum codes. In this paper, using Hermitian construction and classical constacyclic codes, we construct six classes of quantum MDS codes. Two of these six classes of quantum MDS codes have larger minimum distance than the ones available in the literature. Most of these quantum MDS codes are new in the sense that their parameters are not covered by the codes available in the literature.
引用
收藏
页码:5224 / 5228
页数:5
相关论文
共 27 条
[1]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[2]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[3]   The structure of 1-generator quasi-twisted codes and new linear codes [J].
Aydin, N ;
Siap, I ;
Ray-Chaudhuri, DK .
DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (03) :313-326
[4]  
Bierbrauer J, 2000, J COMB DES, V8, P174, DOI 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO
[5]  
2-T
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]   Application of Constacyclic Codes to Quantum MDS Codes [J].
Chen, Bocong ;
Ling, San ;
Zhang, Guanghui .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) :1474-1484
[8]   Quantum codes from concatenated algebraic-geometric codes [J].
Chen, H ;
Ling, S ;
Xing, CP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (08) :2915-2920
[9]   Quantum codes [[6,2,3]]p and [[7,3,3]]p (p ≥ 3) exist [J].
Feng, KQ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) :2384-2391
[10]   On optimal quantum codes [J].
Grassl, M ;
Beth, T ;
Rötteler, M .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (01) :55-64