Mulberry Transcription Factor MnDREB4A Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

被引:24
|
作者
Liu, Xue-Qin [1 ]
Liu, Chang-Ying [1 ]
Guo, Qing [1 ]
Zhang, Meng [1 ]
Cao, Bo-Ning [1 ]
Xiang, Zhong-Huai [1 ]
Zhao, Ai-Chun [1 ]
机构
[1] Southwest Univ, State Key Lab Silkworm Genome Biol, Key Lab Sericulture Funct Genom & Biotechnol, Minist Agr, Chongqing 400716, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
GENE-EXPRESSION; SALT-STRESS; ARABIDOPSIS-THALIANA; LOW-TEMPERATURE; MOLECULAR-CLONING; CROP IMPROVEMENT; WATER-DEFICIT; AP2; DOMAIN; DROUGHT; PLANTS;
D O I
10.1371/journal.pone.0145619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dehydration responsive element binding (DREB) transcription factors have been reported to be involved in stress responses. Most studies have focused on DREB genes in subgroups A-1 and A-2 in herbaceous plants, but there have been few reports on the functions of DREBs from the A-3-A-6 subgroups and in woody plants. Moreover, mulberry trees are ecologically and economically important perennial woody plants, but there has been little research on its stress physiology, biochemistry and molecular biology. In this study, a DREB gene from the mulberry tree, designated as MnDREB4A, classified into the A-4 subgroup by our previous study, was selected for further characterization. Our results showed that the MnDREB4A protein was localized to the nucleus where it activated transcription. The promoter of MnDREB4A can direct prominent expression downstream of the beta-glucuronidase (GUS) gene under heat, cold, drought and salt stress, and GUS staining was deepest after 12 h of stress treatment. The MnDREB4A-overexpression transgenic tobacco showed the improved growth phenotype under untreated conditions, such as greener leaves, longer roots, and lower water loss and senescence rates. Overexpression of MnDREB4A in tobacco can significantly enhance tolerance to heat, cold, drought, and salt stresses in transgenic plants. The leaf discs and seedlings of transgenic plants reduced leaf wilting and senescence rates compared to the wild type plants under the different stress conditions. Further investigation showed that transgenic plants also had higher water contents and proline contents, and lower malondialdehyde contents under untreated condition and stress conditions. Our results indicate that the MnDREB4A protein plays an important role in plant stress tolerance.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] ZmSNAC13, a maize NAC transcription factor conferring enhanced resistance to multiple abiotic stresses in transgenic Arabidopsis
    Luo, Ping
    Chen, Yong
    Rong, Kewei
    Lu, Yuelei
    Wang, Nan
    Xu, Zhennan
    Pang, Bo
    Zhou, Di
    Weng, Jianfeng
    Li, Mingshun
    Zhang, Degui
    Yong, Hongjun
    Han, Jienan
    Zhou, Zhiqiang
    Gao, Wenwei
    Hao, Zhuanfang
    Li, Xinhai
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 170 : 160 - 170
  • [42] A Dehydration-Responsive Element Binding (DREB) Transcription Factor from the Succulent Halophyte Salicornia brachiata Enhances Abiotic Stress Tolerance in Transgenic Tobacco
    Gupta, Kapil
    Jha, Bhavanath
    Agarwal, Pradeep K.
    MARINE BIOTECHNOLOGY, 2014, 16 (06) : 657 - 673
  • [43] Improved Tolerance of Cu/Zn Superoxide Dismutase and Ascorbate Peroxidase Expressing Transgenic Tobacco Seeds and Seedlings against Multiple Abiotic Stresses
    Lee, Young-Pyo
    Ahmad, Raza
    Lee, Haeng-Soon
    Kwak, Sang Soo
    Shafqat, Mustafa Nawaz
    Kwon, Suk-Yoon
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2013, 15 (04) : 725 - 730
  • [44] Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis
    Cheng, Liqin
    Li, Xiaoxia
    Huang, Xin
    Ma, Tian
    Liang, Ye
    Ma, Xingyong
    Peng, Xianjun
    Jia, Junting
    Chen, Shuangyan
    Chen, Yan
    Deng, Bo
    Liu, Gongshe
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 70 : 252 - 260
  • [45] The sweet potato transcription factor IbbHLH33 enhances chilling tolerance in transgenic tobacco
    Yu, Tao
    Zhou, Huanan
    Liu, Zhenlei
    Zhai, Hong
    Liu, Qingchang
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2022, 58 (04) : 210 - 222
  • [46] Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco
    Charrier, Aurelie
    Lelievre, Eric
    Limami, Anis M.
    Planchet, Elisabeth
    JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (09) : 874 - 877
  • [47] Overexpression of Camellia sinensis H1 histone gene confers abiotic stress tolerance in transgenic tobacco
    Wang, Weidong
    Wang, Yuhua
    Du, Yulin
    Zhao, Zhen
    Zhu, Xujun
    Jiang, Xin
    Shu, Zaifa
    Yin, Ying
    Li, Xinghui
    PLANT CELL REPORTS, 2014, 33 (11) : 1829 - 1841
  • [48] Ectopic expression of AtICE1 and OsICE1 transcription factor delays stress-induced senescence and improves tolerance to abiotic stresses in tobacco
    Budhagatapalli, Nagaveni
    Narasimhan, Rama
    Rajaraman, Jeyaraman
    Viswanathan, Chinnusamy
    Nataraja, Karaba N.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2016, 25 (03) : 285 - 293
  • [49] A Cryophyte Transcription Factor, CbABF1, Confers Freezing, and Drought Tolerance in Tobacco
    Yue, Xiule
    Zhang, Guoyan
    Zhao, Zhen
    Yue, Jinli
    Pu, Xiaohong
    Sui, Mengjun
    Zhan, Yi
    Shi, Yulan
    Wang, Zhenyu
    Meng, Guanghua
    Zhao, Zhixing
    An, Lizhe
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [50] Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis
    Tiwari, Poonam
    Indoliya, Yuvraj
    Chauhan, Abhishek Singh
    Pande, Veena
    Chakrabarty, Debasis
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2020, 206