Mulberry Transcription Factor MnDREB4A Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

被引:24
|
作者
Liu, Xue-Qin [1 ]
Liu, Chang-Ying [1 ]
Guo, Qing [1 ]
Zhang, Meng [1 ]
Cao, Bo-Ning [1 ]
Xiang, Zhong-Huai [1 ]
Zhao, Ai-Chun [1 ]
机构
[1] Southwest Univ, State Key Lab Silkworm Genome Biol, Key Lab Sericulture Funct Genom & Biotechnol, Minist Agr, Chongqing 400716, Peoples R China
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
GENE-EXPRESSION; SALT-STRESS; ARABIDOPSIS-THALIANA; LOW-TEMPERATURE; MOLECULAR-CLONING; CROP IMPROVEMENT; WATER-DEFICIT; AP2; DOMAIN; DROUGHT; PLANTS;
D O I
10.1371/journal.pone.0145619
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dehydration responsive element binding (DREB) transcription factors have been reported to be involved in stress responses. Most studies have focused on DREB genes in subgroups A-1 and A-2 in herbaceous plants, but there have been few reports on the functions of DREBs from the A-3-A-6 subgroups and in woody plants. Moreover, mulberry trees are ecologically and economically important perennial woody plants, but there has been little research on its stress physiology, biochemistry and molecular biology. In this study, a DREB gene from the mulberry tree, designated as MnDREB4A, classified into the A-4 subgroup by our previous study, was selected for further characterization. Our results showed that the MnDREB4A protein was localized to the nucleus where it activated transcription. The promoter of MnDREB4A can direct prominent expression downstream of the beta-glucuronidase (GUS) gene under heat, cold, drought and salt stress, and GUS staining was deepest after 12 h of stress treatment. The MnDREB4A-overexpression transgenic tobacco showed the improved growth phenotype under untreated conditions, such as greener leaves, longer roots, and lower water loss and senescence rates. Overexpression of MnDREB4A in tobacco can significantly enhance tolerance to heat, cold, drought, and salt stresses in transgenic plants. The leaf discs and seedlings of transgenic plants reduced leaf wilting and senescence rates compared to the wild type plants under the different stress conditions. Further investigation showed that transgenic plants also had higher water contents and proline contents, and lower malondialdehyde contents under untreated condition and stress conditions. Our results indicate that the MnDREB4A protein plays an important role in plant stress tolerance.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The SsDREB Transcription Factor from the Succulent Halophyte Suaeda salsa Enhances Abiotic Stress Tolerance in Transgenic Tobacco
    Zhang, Xu
    Liu, Xiaoxue
    Wu, Lei
    Yu, Guihong
    Wang, Xiue
    Ma, Hongxiang
    INTERNATIONAL JOURNAL OF GENOMICS, 2015, 2015
  • [22] The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco
    Huang, Gang
    Wan, Renjing
    Zou, Liping
    Ke, Jie
    Zhou, Lihong
    Tan, Shenglong
    Li, Tiantian
    Chen, Lihong
    PLANT CELL REPORTS, 2024, 43 (06)
  • [23] The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants
    van Beek, Coenraad R.
    Guzha, Tapiwa
    Kopana, Nolusindiso
    van der Westhuizen, Cornelius S.
    Panda, Sanjib K.
    van der Vyver, Christell
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (05) : 907 - 921
  • [24] The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants
    Zhai, Yiqian
    Zhang, Lichao
    Xia, Chuan
    Fu, Silu
    Zhao, Guangyao
    Jia, Jizeng
    Kong, Xiuying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 473 (04) : 1321 - 1327
  • [25] EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco
    Li, Xiaoshuang
    Zhang, Daoyuan
    Li, Haiyan
    Wang, Yucheng
    Zhang, Yuanming
    Wood, Andrew J.
    BMC PLANT BIOLOGY, 2014, 14
  • [26] EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco
    Xiaoshuang Li
    Daoyuan Zhang
    Haiyan Li
    Yucheng Wang
    Yuanming Zhang
    Andrew J Wood
    BMC Plant Biology, 14
  • [27] A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis
    Zhang, Lina
    Zhang, Lichao
    Xia, Chuan
    Zhao, Guangyao
    Liu, Ji
    Jia, Jizeng
    Kong, Xiuying
    PHYSIOLOGIA PLANTARUM, 2015, 153 (04) : 538 - 554
  • [28] LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco
    Wu, Dianyun
    Ji, Jing
    Wang, Gang
    Guan, Chunfeng
    Jin, Chao
    PLANT CELL REPORTS, 2014, 33 (12) : 2033 - 2045
  • [29] LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco
    Dianyun Wu
    Jing Ji
    Gang Wang
    Chunfeng Guan
    Chao Jin
    Plant Cell Reports, 2014, 33 : 2033 - 2045
  • [30] Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco
    Yao, Wenjing
    Wang, Lei
    Zhou, Boru
    Wang, Shengji
    Li, Renhua
    Jiang, Tingbo
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 198 : 23 - 31