Discrete rotating waves in a ring of coupled mechanical oscillators with strong damping

被引:3
作者
Qin, Wen-Xin [1 ]
Zhang, Pei-Lin [1 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
boundary-value problems; damping; oscillators; wave equations; JOSEPHSON-JUNCTIONS; TRAVELING-WAVES; FORM SOLUTIONS; LARGE ARRAYS; DYNAMICS; EQUATION; SYNCHRONIZATION; UNIQUENESS; EXISTENCE; BEHAVIOR;
D O I
10.1063/1.3122772
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By establishing the monotonicity in a ring of coupled oscillators with strong damping, we show the global stability of the discrete rotating wave, whose existence is demonstrated by applying the Schauder fixed point theorem.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators
    Dvorak, Anton
    Astakhov, Vladimir
    Perlikowski, Przemyslaw
    Kapitaniak, Tomasz
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2016, 225 (13-14) : 2635 - 2643
  • [32] Synchronizations in Three Coupled Oscillators with Memristor Synapses as Ring Structure
    Kotani, Yukinojo
    Uwate, Yoko
    Nishio, Yoshifumi
    2023 20TH INTERNATIONAL SOC DESIGN CONFERENCE, ISOCC, 2023, : 251 - 252
  • [33] Bifurcation delay, travelling waves and chimera-like states in a network of coupled oscillators
    Varshney, Vaibhav
    Kumarasamy, Suresh
    Biswal, Bibhu
    Prasad, Awadhesh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13) : 2307 - 2325
  • [34] Active control of the synchronization manifold in a ring of mutually coupled oscillators
    Yamapi, Rene
    Boccaletti, Stefano
    PHYSICS LETTERS A, 2007, 371 (1-2) : 48 - 57
  • [35] Travelling waves in arrays of delay-coupled phase oscillators
    Laing, Carlo R.
    CHAOS, 2016, 26 (09)
  • [36] Damping of Rotating Beams with Particle Dampers: Discrete Element Method Analysis
    Els, D. N. J.
    POWDERS AND GRAINS 2013, 2013, 1542 : 867 - 870
  • [37] Dynamics analysis of mechanical components: A discrete model for damping
    Cosmi, F.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 27 (03): : 187 - 195
  • [38] Modeling the damping mechanism of MEMS oscillators in the transitional flow regime with thermal waves
    Zengerle, T.
    Joppich, J.
    Schwarz, P.
    Ababneh, A.
    Seidel, H.
    SENSORS AND ACTUATORS A-PHYSICAL, 2020, 311
  • [39] PERIODIC TRAVELING WAVES IN THE SYSTEM OF LINEARLY COUPLED NONLINEAR OSCILLATORS ON 2D-LATTICE
    Bak, Sergiy
    ARCHIVUM MATHEMATICUM, 2022, 58 (01): : 1 - 13
  • [40] PERIODIC TRAVELING WAVES IN A SYSTEM OF NONLINEARLY COUPLED NONLINEAR OSCILLATORS ON A TWO-DIMENSIONAL LATTICE
    Bak, S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (03): : 225 - 234