Polymer waveguide couplers based on metal nanoparticle-polymer nanocomposites

被引:12
作者
Signoretto, M. [1 ]
Suarez, I. [1 ]
Chirvony, V. S. [1 ]
Abargues, R. [2 ]
Rodriguez-Canto, P. J. [2 ]
Martinez-Pastor, J. [1 ]
机构
[1] Univ Valencia, Inst Ciencia Mat, UMDO Unidad Asociada CSIC IMM, Valencia 46007, Spain
[2] Intenanomat SL, Paterna 46980, Spain
关键词
scattering; waveguide; metal nanoparticle; polymer; GOLD NANOPARTICLES; REFRACTIVE-INDEX; LIGHT; MODES; SHAPE; SIZE; ABSORPTION; CHAIN;
D O I
10.1088/0957-4484/26/47/475201
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP-Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404-780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Piezoelectric Nanoparticle-Polymer Composite Foams
    McCall, William R.
    Kim, Kanguk
    Heath, Cory
    La Pierre, Gina
    Sirbuly, Donald J.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) : 19504 - 19509
  • [2] Nonlinear optical responses of nanoparticle-polymer composites incorporating organic (hyperbranched polymer)-metallic nanoparticle complex
    Liu, Xiangming
    Matsumura, Koji
    Tomita, Yasuo
    Yasui, Kei
    Kojima, Keisuke
    Chikama, Katsumi
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [3] Simulation Study of Nanoparticle-Polymer Organic Suspension Stability
    Lu, Kathy
    Gervasio, Michelle
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (05)
  • [4] Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength
    Dunklin, Jeremy R.
    Roper, D. Keith
    JOURNAL OF NANOMATERIALS, 2017, 2017
  • [5] Preparation of nanoparticle-polymer composite with plasma treatment
    Hong, Yong C.
    Lee, Shin W.
    Kwon, O-Pil
    Lee, Suck H.
    Uhm, Han S.
    SURFACE & COATINGS TECHNOLOGY, 2010, 205 : S271 - S274
  • [6] Morphology control in crystalline nanoparticle-polymer aggregates
    Bian, Tong
    Klajn, Rafal
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2021, 1505 (01) : 191 - 201
  • [7] Review of Light-Activated Antimicrobial Nanoparticle-Polymer Composites for Biomedical Devices
    Omidiyan, Mina
    Srinoi, Pannaree
    Tajalli, Pooria
    Lee, T. Randall
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 8377 - 8391
  • [8] Preparation and Application of Inorganic Nanoparticle-Polymer Composites
    Guo, Xiaoqin
    Wang, Yongkai
    Zhang, Rui
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 1943 - 1946
  • [9] Perspective of laser-prototyping nanoparticle-polymer composites
    Zhang, Dongshi
    Goekce, Bilal
    APPLIED SURFACE SCIENCE, 2017, 392 : 991 - 1003
  • [10] In-situ synthesis of metal nanoparticle-polymer composites and their application as efficient interfacial materials for both polymer and planar heterojunction perovskite solar cells
    Hu, Zhicheng
    Dong, Sheng
    Xue, Qifan
    Xu, Rongguo
    Yip, Hin-Lap
    Huang, Fei
    Cao, Yong
    ORGANIC ELECTRONICS, 2015, 27 : 46 - 52