Probing the Ellis-Bronnikov wormhole geometry with a scalar field: Clouds, waves and Q-balls

被引:3
作者
Blzquez-Salcedo, Jose Luis [1 ]
Dariescu, Marina-Aura [2 ]
Dariescu, Ciprian [2 ]
Radu, Eugen [3 ]
Stelea, Cristian [4 ]
机构
[1] Univ Complutense Madrid, Dept Fis Teor, IPARCOS, E-28040 Madrid, Spain
[2] Alexandru Ioan Cuza Univ, Fac Phys, Bd Carol1 11, Iasi 700506, Romania
[3] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Matemat, Campus Santiago, P-3810183 Aveiro, Portugal
[4] Alexandru Ioan Cuza Univ, Inst Interdisciplinary Res, Dept Exact & Nat Sci, Bd. Carol I 11, Iasi 700506, Romania
关键词
SOLITONS;
D O I
10.1016/j.physletb.2022.136993
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Ellis-Bronnikov solution provides a simple toy model for the study of various aspects of wormhole physics. In this work we solve the Klein-Gordon equation in this background and find an exact solution in terms of Heun's function. This may describe 'scalar clouds' (i.e. localized, particle-like configuration) or scalar waves. However, in the former case, the radial derivative of the scalar field is discontinuous at the wormhole's throat (except for the spherical case). This pathology is absent for a suitable scalar field self-interaction, and we provide evidence for the existence of spherically symmetric and spinning Q-balls in a Ellis-Bronnikov wormhole background. (C)& nbsp;2022 The Author(s). Published by Elsevier B.V.& nbsp;& nbsp;
引用
收藏
页数:8
相关论文
共 32 条
[1]  
[Anonymous], ARXIVGRQC9605059
[2]  
Birrell N.D., 1984, QUANTUM FIELDS CURVE, DOI [10.1017/CBO9780511622632, DOI 10.1017/CBO9780511622632]
[3]   Scalar and axial quasinormal modes of massive static phantom wormholes [J].
Blazquez-Salcedo, Jose Luis ;
Chew, Xiao Yan ;
Kunz, Jutta .
PHYSICAL REVIEW D, 2018, 98 (04)
[4]  
Bronnikov K. A., 1973, Acta Physica Polonica B, VB4, P251
[5]   Relativistic Bosons in Time-Harmonic Electric Fields [J].
Buhucianu, Ovidiu ;
Dariescu, Marina-Aura ;
Dariescu, Ciprian .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (02) :526-535
[6]   Q-BALLS [J].
COLEMAN, S .
NUCLEAR PHYSICS B, 1985, 262 (02) :263-283
[7]   U(1) GAUGE-THEORY FOR CHARGED BOSONIC FIELDS ON RXS3 TOPOLOGY [J].
DARIESCU, C ;
DARIESCU, M .
FOUNDATIONS OF PHYSICS, 1991, 21 (11) :1323-1327
[8]   Persistent currents and critical magnetic field in planar dynamics of charged bosons [J].
Dariescu, Marina-Aura ;
Dariescu, Ciprian .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (25)
[9]   COMMENTS ON NONLINEAR WAVE EQUATIONS AS MODELS FOR ELEMENTARY PARTICLES [J].
DERRICK, GH .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) :1252-&
[10]   Boson stars with nontrivial topology [J].
Dzhunushaliev, Vladimir ;
Folomeev, Vladimir ;
Hoffmann, Christian ;
Kleihaus, Burkhard ;
Kunz, Jutta .
PHYSICAL REVIEW D, 2014, 90 (12)