Contrasting trends of agpaitic crystallization in nepheline syenite in the Pilanesberg Alkaline Complex, South Africa

被引:8
作者
Andersen, Tom [1 ,2 ]
Elburg, Marlina [2 ]
Erambert, Muriel [1 ]
机构
[1] Univ Oslo, Dept Geosci, POB 1047, N-0316 Oslo, Norway
[2] Univ Johannesburg, Dept Geol, POB 524,Auckland Pk, ZA-2006 Johannesburg, South Africa
关键词
Peralkaline rocks; Agpaitic nepheline syenite; Eudialyte; South Africa; EUDIALYTE-GROUP MINERALS; ILIMAUSSAQ COMPLEX; DECOMPOSITION MINERALS; GREENLAND; ROCKS; EVOLUTION; KAKORTOKITES; ASSEMBLAGES; PEGMATITES; TRANSITION;
D O I
10.1016/j.lithos.2018.05.015
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Different types of peralkaline nepheline syenite in the Pilanesberg Alkaline Complex show contrasting Zr- and Ti-bearing mineral assemblages: In some members of the green foyaite suite, eudialyte is the dominant Zr mineral, as is common in many other agpaitic nepheline syenites. Eudialyte has formed together with aegirine +/- arfvedsonite, alkali feldspar(s), sodalite and nepheline. Aenigmatite is the main Ti-bearing mineral, but some samples have normandite (a Ti-Zr disilicate mineral) as a late magmatic mineral. Other varieties of green foyaite do not have eudialyte, but carry lamprophyllite (a Ti-Sr disilicate mineral) as a prominent, early crystallizing mineral. In contrast, pockets of trapped melt in white foyaite crystallized a series of titanium minerals starting with clearly miaskitic assemblages (with titanite and ilmenite), through increasingly agpaitic assemblages with astrophyllite, aenigmatite and lorenzenite, with hilairite forming at the end, as the only mineral with essential Zr. In both green and white foyaite, aegirine has percent- to sub-percent amounts of ZrO2. Chemographic analysis of melt-mineral equilibria suggests that the main driving force behind the evolution of mineral assemblages in both white and green foyaite is increasing peralkalinity of the melt. In the white foyaite, this took place at high alpha(H2O) throughout, whereas the green foyaite started its evolution at much lower alpha(H2O). The different Zr and Ti mineral assemblages observed in the latter rock type can be explained by differences in water activity during crystallization of the magma, reflecting different pre-emplacement fractionation and degassing histories of batches of genetically related nepheline syenite magma. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 388
页数:14
相关论文
共 36 条
[1]   Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zirconium Silicate Mineral Assemblages as Indicators of Alkalinity and Volatile Fugacity in Mildly Agpaitic Magma [J].
Andersen, T. ;
Erambert, M. ;
Larsen, A. O. ;
Selbekk, R. S. .
JOURNAL OF PETROLOGY, 2010, 51 (11) :2303-2325
[2]  
Andersen T., 2013, Mineralogia, V44, P61, DOI [10.2478/mipo-2013-0007, DOI 10.2478/MIPO-2013-0007]
[3]   The miaskitic-to-agpaitic transition in peralkaline nepheline syenite (white foyaite) from the Pilanesberg Complex, South Africa [J].
Andersen, Tom ;
Elburg, Marlina ;
Erambert, Muriel .
CHEMICAL GEOLOGY, 2017, 455 :166-181
[4]   The Transition from Agpaitic to Hyperagpaitic Magmatic Crystallization in the Ilimaussaq Alkaline Complex, South Greenland [J].
Andersen, Tom ;
Friis, Henrik .
JOURNAL OF PETROLOGY, 2015, 56 (07) :1343-1363
[5]   Late-magmatic mineral assemblages with siderite and zirconian pyroxene and amphibole in the anorogenic Mt Gibraltar microsyenite, New South Wales, Australia, and their petrological implications [J].
Andersen, Tom ;
Carr, Paul ;
Erambert, Muriel .
LITHOS, 2012, 151 :46-56
[6]   The role of fractional crystallization and late-stage peralkaline melt segregation in the mineralogical evolution of Cenozoic nephelinites/phonolites from Saghro (SE Morocco) [J].
Berger, J. ;
Ennih, N. ;
Mercier, J. C. C. ;
Liegeois, J. -P. ;
Demaiffe, D. .
MINERALOGICAL MAGAZINE, 2009, 73 (01) :59-82
[7]   Zirconosilicates in the kakortokites of the Ilimaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems [J].
Borst, A. M. ;
Friis, H. ;
Andersen, T. ;
Nielsen, T. F. D. ;
Waight, T. E. ;
Smit, M. A. .
MINERALOGICAL MAGAZINE, 2016, 80 (01) :5-30
[8]   The geometry and emplacement of the Pilanesberg Complex, South Africa [J].
Cawthorn, R. Grant .
GEOLOGICAL MAGAZINE, 2015, 152 (05) :802-812
[9]  
International Mineralogical Association, 2018, NEW IMA LIST MIN WOR
[10]   RARE-EARTH ELEMENT REFERENCE SAMPLES FOR ELECTRON-MICROPROBE ANALYSIS [J].
JAROSEWICH, E ;
BOATNER, LA .
GEOSTANDARDS NEWSLETTER, 1991, 15 (02) :397-399