Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases

被引:54
作者
Liu, Xiao-Jin [1 ]
Zhao, Wen [1 ]
Zhang, Yang [1 ]
Zhu, Zong-Hong [2 ]
机构
[1] Univ Sci & Technol China, Dept Astron, CAS Key Lab Res Galaxies & Cosmol, Chinese Acad Sci, Hefei 230026, Anhui, Peoples R China
[2] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
关键词
PROBE WMAP OBSERVATIONS; GRAVITY-WAVES; SPECTRUM; LIMITS; RADIATION; PERTURBATIONS; MODELS;
D O I
10.1103/PhysRevD.93.024031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background, which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we investigate the constraints on the RGWs and on the inflationary parameters by the observations of current and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase transitions (e.g., e(+)e(-) annihilation, QCD transition, and supersymmetry breaking) and relativistic free-streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase by a factor similar to 2 for both current and future observations. However, the effects of free-steaming neutrinos and dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in the early universe is larger than 1/3, i.e., deviating from the standard hot big bang scenario, the detection of RGWs by pulsar timing arrays becomes much more promising.
引用
收藏
页数:19
相关论文
共 101 条
[1]   Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Accadia, T. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Affeldt, C. ;
Agathos, M. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Allocca, A. ;
Amariutei, D. ;
Andersen, M. ;
Anderson, R. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Austin, L. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. ;
Barsotti, L. ;
Barsuglia, M. ;
Barton, M. A. ;
Bartos, I. .
PHYSICAL REVIEW LETTERS, 2014, 113 (23)
[2]   Joint Analysis of BICEP2/Keck Array and Planck Data [J].
Ade, P. A. R. ;
Aghanim, N. ;
Ahmed, Z. ;
Aikin, R. W. ;
Alexander, K. D. ;
Arnaud, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barkats, D. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Benton, S. J. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bischoff, C. A. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Brevik, J. A. ;
Bucher, M. ;
Buder, I. ;
Bullock, E. ;
Burigana, C. ;
Butler, R. C. ;
Buza, V. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Christensen, P. R. ;
Colombo, L. P. L. ;
Combet, C. ;
Connors, J. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10) :1-17
[3]   Planck 2013 results. XVI. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Armitage-Caplan, C. ;
Arnaud, M. ;
Ashdown, M. ;
Atrio-Barandela, F. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bobin, J. ;
Bock, J. J. ;
Bonaldi, A. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Bridges, M. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cappellini, B. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chen, X. ;
Chiang, H. C. ;
Chiang, L. -Y ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Couchot, F. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. .
ASTRONOMY & ASTROPHYSICS, 2014, 571
[4]  
Ade P. A. R., ARXIV150201589 PLANC
[5]   Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities [J].
Allen, B ;
Romano, JD .
PHYSICAL REVIEW D, 1999, 59 (10)
[6]  
[Anonymous], 1977, ACAD SCI, V302, P439
[7]  
[Anonymous], 1976, JETP LETT, V23, P293
[8]  
[Anonymous], 1980, PHYS LETT, V91B, p99S
[9]  
[Anonymous], 2013, GW Notes
[10]  
[Anonymous], ARXIV150506546