A Smart Content-Based Image Retrieval Approach Based on Texture Feature and Slantlet Transform

被引:0
|
作者
Mhaibes, Hakeem Imad [1 ]
Shallal, Qahtan Makki [2 ]
Abood, May Hattim [3 ]
机构
[1] Middle Tech Univ, Kut Tech Inst, Baghdad, Iraq
[2] Management Tech Coll Basra, Basrah, Iraq
[3] Al Iraqia Univ, Coll Engn, Comp Engn Dept, Baghdad, Iraq
关键词
Image Processing; Information retrieval; CBIR; Slantlet Transform; Features extraction; Similarity measure;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the advancement of digital storing and capturing technologies in recent years, an image retrieval system has been widely known for Internet usage. Several image retrieval methods have been proposed to find similar images from a collection of digital images to a specified query image. Content-based image retrieval (CBIR) is a subfield of image retrieval techniques that extracts features and descriptions content such as color, texture, and shapes from a huge database of images. This paper proposes a two-tier image retrieval approach, a coarse matching phase, and a fine-matching phase. The first phase is used to extract spatial features, and the second phase extracts texture features based on the Slantlet transform. The findings of this study revealed that texture features are reliable and capable of producing excellent results and unsusceptible to low resolution and proved that the SLT-based texture feature is the perfect mate. The proposed method's experimental results have outperformed the benchmark results with precision gaps of 28.0 % for the Caltech 101 dataset. The results demonstrate that the two-tier strategy performed well with the successive phase (fine-matching) and the preceding phase (coarse matching) working hand in hand harmoniously.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [31] Hybrid approach for content-based image retrieval
    Theetchenya, S.
    Ramasubbareddy, Somula
    Sankar, S.
    Basha, Syed Muzamil
    International Journal of Data Science, 2021, 6 (01) : 45 - 56
  • [32] A pyramidal approach to content-based image retrieval
    Li, Ze-Nian
    GMAI 2007: GEOMETRIC MODELING AND IMAGING, PROCEEDINGS, 2007, : 109 - 114
  • [33] A hierarchical approach to content-based image retrieval
    You, J
    Cheung, KH
    Liu, J
    CISST'03: PROCEEDING OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS AND TECHNOLOGY, VOLS 1 AND 2, 2003, : 127 - 133
  • [34] A hierarchical content-based image retrieval approach
    Xiong, XJ
    Chan, KL
    STORAGE AND RETRIEVAL FOR MEDIA DATABASES 2001, 2001, 4315 : 437 - 448
  • [35] A fuzzy approach to content-based image retrieval
    Medasani, S
    Krishnapuram, R
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 2, 1999, : 964 - 968
  • [36] Color and texture feature for content based image retrieval
    Wu J.
    Wei Z.
    Chang Y.
    International Journal of Digital Content Technology and its Applications, 2010, 4 (03) : 43 - 49
  • [37] A fuzzy feature clustering with relevance feedback approach to content-based image retrieval
    Huang, YP
    Chang, TW
    Huang, CZ
    VECIMS'03: 2003 IEEE INTERNATIONAL SYMPOSIUM ON VIRTUAL ENVIRONMENTS, HUMAN-COMPUTER INTERFACES AND MEASUREMENT SYSTEMS, 2003, : 57 - 62
  • [38] A Novel Hybrid Approach for a Content-Based Image Retrieval Using Feature Fusion
    Sikandar, Shahbaz
    Mahum, Rabbia
    Alsalman, AbdulMalik
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [39] Content-based image retrieval by integrating color and texture features
    Wang, Xiang-Yang
    Zhang, Bei-Bei
    Yang, Hong-Ying
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 68 (03) : 545 - 569
  • [40] Content-Based Image Retrieval Using Texture Structure Histogram
    Hou, Gang
    Feng, Qinghe
    Zhang, Xiaoxue
    Kong, Jun
    Zhang, Ming
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON MULTIMEDIA TECHNOLOGY (ICMT-13), 2013, 84 : 1356 - 1363