Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex

被引:9
作者
Mazzamuto, G. [1 ]
Costantini, I [1 ]
Neri, M. [2 ]
Roffilli, M. [2 ]
Silvestri, L. [1 ,3 ]
Pavone, F. S. [1 ,3 ,4 ]
机构
[1] European Lab Nonlinear Spect LENS, Via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
[2] Bioret Srl, Corte Zavattini 21, I-47522 Cesena, FC, Italy
[3] Natl Res Council INO CNR, Natl Inst Opt, Via Nello Carrara 1, I-50019 Sesto Fiorentino, FI, Italy
[4] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, FI, Italy
来源
APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2018 | 2018年 / 10784卷
基金
欧洲研究理事会;
关键词
Segmentation; Brain images; Convolutional neural network;
D O I
10.1007/978-3-319-77538-8_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative analysis of brain cytoarchitecture requires effective and efficient segmentation of the raw images. This task is highly demanding from an algorithmic point of view, because of the inherent variations of contrast and intensity in the different areas of the specimen, and of the very large size of the datasets to be processed. Here, we report a machine vision approach based on Convolutional Neural Networks (CNN) for the near real-time segmentation of neurons in three-dimensional images with high specificity and sensitivity. This instrument, together with high-throughput sample preparation and imaging, can lay the basis for a quantitative revolution in neuroanatomical studies.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 13 条
[1]   Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding [J].
Alegro, Maryana ;
Theofilas, Panagiotis ;
Nguy, Austin ;
Castruita, Patricia A. ;
Seeley, William ;
Heinsen, Helmut ;
Ushizima, Daniela M. ;
Grinberg, Lea T. .
JOURNAL OF NEUROSCIENCE METHODS, 2017, 282 :20-33
[2]  
[Anonymous], 2017, REV DEEP LEARNING TE
[3]  
[Anonymous], TECHNICAL REPORT
[4]  
[Anonymous], ALIQUISTM FRAM
[5]   A versatile clearing agent for multi-modal brain imaging [J].
Costantini, Irene ;
Ghobril, Jean-Pierre ;
Di Giovanna, Antonino Paolo ;
Mascaro, Anna Letizia Allegra ;
Silvestri, Ludovico ;
Muellenbroich, Marie Caroline ;
Onofri, Leonardo ;
Conti, Valerio ;
Vanzi, Francesco ;
Sacconi, Leonardo ;
Guerrini, Renzo ;
Markram, Henry ;
Iannello, Giulio ;
Pavone, Francesco Saverio .
SCIENTIFIC REPORTS, 2015, 5
[6]   Ultramicroscopy:: three-dimensional visualization of neuronal networks in the whole mouse brain [J].
Dodt, Hans-Ulrich ;
Leischner, Ulrich ;
Schierloh, Anja ;
Jaehrling, Nina ;
Mauch, Christoph Peter ;
Deininger, Katrin ;
Deussing, Jan Michael ;
Eder, Matthias ;
Zieglgaensberger, Walter ;
Becker, Klaus .
NATURE METHODS, 2007, 4 (04) :331-336
[7]   Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images [J].
Frasconi, Paolo ;
Silvestri, Ludovico ;
Soda, Paolo ;
Cortini, Roberto ;
Pavone, Francesco S. ;
Iannello, Giulio .
BIOINFORMATICS, 2014, 30 (17) :I587-I593
[8]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[9]   DETECTING SALIENT BLOB-LIKE IMAGE STRUCTURES AND THEIR SCALES WITH A SCALE-SPACE PRIMAL SKETCH - A METHOD FOR FOCUS-OF-ATTENTION [J].
LINDEBERG, T .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1993, 11 (03) :283-318
[10]   Geometric desing and space planning using the marching squares and marching cube algorithms [J].
Maple, C .
2003 INTERNATIONAL CONFERENCE ON GEOMETRIC MODELING AND GRAPHICS, PROCEEDINGS, 2003, :90-95