Uptake, translocation, size characterization and localization of cerium oxide nanoparticles in radish (Raphanus sativus L.)

被引:53
|
作者
Wojcieszek, Justyna [1 ]
Jimenez-Lamana, Javier [2 ]
Bierla, Katarzyna [2 ]
Ruzik, Lena [1 ]
Asztemborska, Monika [3 ]
Jarosz, Maciej [1 ]
Szpunar, Joanna [2 ]
机构
[1] Warsaw Univ Technol, Fac Chem, Warsaw, Poland
[2] UPPA, Inst Analyt Sci & Physicohem Environm & Mat IPREM, UMR5254, CNRS, Pau, France
[3] Univ Warsaw, Fac Biol, Isotop Lab, Warsaw, Poland
关键词
Single particle ICP-MS; Edible plants; Engineered nanoparticles; Laser ablation ICP-MS; Ionization efficiency; CEO2; NANOPARTICLES; ENGINEERED NANOPARTICLES; ZNO NANOPARTICLES; ORGANIC-MATTER; PLANT UPTAKE; IMPACT; BIOACCUMULATION; TRANSFORMATION; SPECIATION; BIOTRANSFORMATION;
D O I
10.1016/j.scitotenv.2019.05.265
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to their unique physical and chemical properties, the production and use of cerium oxide nanoparticles (CeO2 NPs) in different areas, especially in automotive industry, is rapidly increasing, causing their presence in the environment. Released CeO2 NPs can undergo different transformations and interact with the soil and hence with plants, providing a potential pathway for human exposure and leading to serious concerns about their impact on the ecosystem and human organism. This study investigates the uptake, bioaccumulation, possible translocation and localization of CeO2 NPs in a model plant (Raphanus sativus L.), whose edible part is in direct contact with the soil where contamination is more likely to happen. The stability of CeO2 NPs in plant growth medium as well as after applying a standard enzymatic digestion procedure was tested by single particle ICP-MS (SP-ICP-MS) showing that CeO2 NPs can remain intact after enzymatic digestion; however, an agglomeration process was observed in the growth medium already after one day of cultivation. An enzymatic digestion method was next used in order to extract intact nanoparticles from the tissues of plants cultivated from the stage of seeds, followed by size characterization by SP-ICP-MS. The results obtained by SP-ICP-MS showed a narrower size distribution in the case of roots suggesting preferential uptake of smaller nanoparticles which led to the conclusion that plants do not take up the CeO2 NPs agglomerates present in the medium. However, nanoparticles at higher diameters were observed after analysis of leaves plus stems. Additionally, a small degree of dissolution was observed in the case of roots. Finally, after CeO2 NPs treatment of adult plants, the spatial distribution of intact CeO2 NPs in the radish roots was studied by laser ablation ICP-MS (LA-ICP-MS) and the ability of NPs to enter and be accumulated in root tissues was confirmed. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [42] Antibacterial Activities of Red Colored Radish Types (Raphanus sativus L.)
    Kaymak, Haluk Caglar
    Yilmaz, Suzan Ozturk
    Ercisli, Sezai
    Guvenc, Ismail
    ROMANIAN BIOTECHNOLOGICAL LETTERS, 2018, 23 (04): : 13744 - 13749
  • [43] Thiocyanate content in relation to the quality features of radish Raphanus sativus L.
    Capecka, E
    ACTA PHYSIOLOGIAE PLANTARUM, 1998, 20 (02) : 143 - 147
  • [44] Genetic and physiological analyses of root cracking in radish (Raphanus sativus L.)
    Xiaona Yu
    Su Ryun Choi
    Sushil Satish Chhapekar
    Lu Lu
    Yinbo Ma
    Ji-Young Lee
    Seongmin Hong
    Yoon-Young Kim
    Sang Heon Oh
    Yong Pyo Lim
    Theoretical and Applied Genetics, 2019, 132 : 3425 - 3437
  • [45] Temperature and photoperiod effects on photosynthetic indices of radish (Raphanus sativus L.)
    Sirtautas, Ramunas
    Samuoliene, Giedre
    Brazaityte, Ausra
    Duchovskis, Pavelas
    ZEMDIRBYSTE-AGRICULTURE, 2011, 98 (01) : 57 - 62
  • [46] Genetic Control of the Wavy Shoots Character in Radish Raphanus sativus L.
    L. I. Karpinskaya
    I. S. Buzovkina
    Russian Journal of Genetics, 2005, 41 : 1028 - 1034
  • [47] Inheritance and Molecular Marker for Flowering Time in Radish (Raphanus sativus L.)
    Qingbiao Wang
    Yanping Wang
    Li Zhang
    Plant Molecular Biology Reporter, 2018, 36 : 878 - 887
  • [48] Agrobacterium-mediated genetic transformation of radish (Raphanus sativus L.)
    Cho, Mi Ae
    Min, Sung Ran
    Ko, Suk Min
    Liu, Jang Ryol
    Choi, Pil Son
    PLANT BIOTECHNOLOGY, 2008, 25 (02) : 205 - 208
  • [49] Floating system cultivation of radish (Raphanus sativus L.):: Production and quality
    Salerno, A
    Pierandrei, F
    Rea, E
    Colla, G
    Rouphael, Y
    Saccardo, F
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SOILLESS CULTURE AND HYDROPONICS, 2005, (697): : 87 - 92
  • [50] Impact of Industrial Effluents on Accumulation, Translocation of Zinc and Antioxidant Activity in Radish (Raphanus sativus L.): A Laboratory Study
    Kravtsova, A.
    Zinicovscaia, I.
    Peshkova, A.
    Yushin, N.
    Cepoi, L.
    Chiriac, T.
    Rudi, L.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2024, 21 (05) : 1098 - 1109