Laminin degradation by plasmin regulates long-term potentiation

被引:0
作者
Nakagami, Y [1 ]
Abe, K [1 ]
Nishiyama, N [1 ]
Matsuki, N [1 ]
机构
[1] Univ Tokyo, Grad Sch Pharmaceut Sci, Chem Pharmacol Lab, Bunkyo Ku, Tokyo 1130033, Japan
关键词
plasmin; long-term potentiation; hippocampus; laminin; extracellular matrix; synaptic plasticity; organotypic culture;
D O I
暂无
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Plasmin is converted from its zymogen plasminogen by tissue type or urokinase type plasminogen activator (PA) and degrades many components of the extracellular matrix (ECM). To explore the possibility that the PA-plasmin system regulates synaptic plasticity, we investigated the effect of plasmin on degradation of ECM and synaptic plasticity by using organotypic hippocampal cultures. High-frequency stimulation produced long-term potentiation (LTP) in control slices, whereas the potentiation was induced but not maintained in slices pretreated with 100 nM plasmin for 6 hr. The baseline synaptic responses were not affected by pretreatment with plasmin. The impairment of LTP maintenance was not observed in slices pretreated with 100 nM plasmin for 6 hr, washed, and then cultured for 24-48 hr in the absence of plasmin. To identify substrates of plasmin, the expression of three major components of ECM, laminin, fibronectin, and type IV collagen, was investigated by immunofluorescence imaging. The three ECM components were widely distributed in the hippocampus, and only laminin was degraded by plasmin pretreatment. The expression level of laminin returned to normal levels when the slices were cultured for 24-48 hr after washout of plasmin. Furthermore, preincubation with anti-laminin antibodies prevented both the degradation of laminin and the impairment of LTP maintenance by plasmin. These results suggest that the laminin-mediated cell-ECM interaction may be necessary for the maintenance of LTP.
引用
收藏
页码:2003 / 2010
页数:8
相关论文
共 43 条
[1]  
Bahr BA, 1997, J NEUROSCI, V17, P1320
[2]   Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway [J].
Baranes, D ;
Lederfein, D ;
Huang, YY ;
Chen, M ;
Bailey, CH ;
Kandel, ER .
NEURON, 1998, 21 (04) :813-825
[3]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[4]   Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses [J].
Buchs, PA ;
Muller, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (15) :8040-8045
[5]   Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin [J].
Chen, ZL ;
Strickland, S .
CELL, 1997, 91 (07) :917-925
[6]  
Frey U, 1996, J NEUROSCI, V16, P2057
[7]   Organotypic slice cultures: a technique has come of age [J].
Gahwiler, BH ;
Capogna, M ;
Debanne, D ;
McKinney, RA ;
Thompson, SM .
TRENDS IN NEUROSCIENCES, 1997, 20 (10) :471-477
[8]   PERFORATED AXOSPINOUS SYNAPSES WITH MULTIPLE, COMPLETELY PARTITIONED TRANSMISSION ZONES - PROBABLE STRUCTURAL INTERMEDIATES IN SYNAPTIC PLASTICITY [J].
GEINISMAN, Y .
HIPPOCAMPUS, 1993, 3 (04) :417-434
[9]   Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways [J].
Huang, YY ;
Bach, ME ;
Lipp, HP ;
Zhuo, M ;
Wolfer, DP ;
Hawkins, RD ;
Schoonjans, L ;
Kandel, ER ;
Godfraind, JM ;
Mulligan, R ;
Collen, D ;
Carmeliet, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (16) :8699-8704
[10]  
Lauri SE, 1999, J NEUROSCI, V19, P1226