SOME GENERALIZATIONS OF NUMERICAL RADIUS ON OFF-DIAGONAL PART OF 2 x 2 OPERATOR MATRICES

被引:27
作者
Hajmohamadi, Monire [1 ]
Lashkaripour, Rahmatollah [1 ]
Bakherad, Mojtaba [1 ]
机构
[1] Univ Sistan & Baluchestan, Dept Math, Fac Math, Zahedan, Iran
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 02期
关键词
Cartesian decomposition; Jensen inequality; numerical radius; off-diagonal part; operator mean; operator matrix; positive operator; Young inequality; INEQUALITIES; BOUNDS;
D O I
10.7153/jmi-2018-12-33
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize several inequalities involving powers of the numerical radius for off- diagonal part of 2 x 2 operator matrices of the form T =[(0)(B)(C)(0)], where B,C are two operators. In particular,if T = [(0)(B)(C)(0)],then we get 1/2(3/2()(r)(-1))max {parallel to mu parallel to,parallel to eta parallel to} <= w(r) (T) <= 1/2(r)(+1)max {parallel to mu parallel to,parallel to eta parallel to}, where r >= 2, mu = vertical bar (C - B*)-i(C + B*)+ i(C + B*)vertical bar(r)and eta = vertical bar(B -C*) + i(B + C*)(r)+ vertical bar (C*- B)+ i(B + C*)(r).
引用
收藏
页码:447 / 457
页数:11
相关论文
共 15 条