Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation

被引:10
|
作者
Kotyczka, Paul [1 ]
Lefevre, Laurent [2 ]
机构
[1] Tech Univ Munich, Dept Mech Engn, Chair Automat Control, Boltzmannstr 15, D-8570 Garching, Germany
[2] Univ Grenoble Alpes, LCIS, 50 Rue Barthelemy de Laffemas, F-26902 Valence, France
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 03期
关键词
Port-Hamiltonian systems; Dirac structures; discrete-time systems; geometric numerical integration; symplectic methods;
D O I
10.1016/j.ifacol.2018.06.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a family of discrete-time lossless input-state-output port-Hamiltonian systems based on numerical time integration with symplectic collocation schemes. For systems with non-zero input, symplecticity extends to the conservation of a discrete energy balance, based on which a discrete-time Dirac structure is defined. Using Gauss-Legendre collocation, the corresponding quadrature formula allows to quantify the discretization error for the supplied energy. On a linear example, backward error analysis and numerical experiments are performed in order to illustrate the accuracy of the resulting structure-preserving integration schemes. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [41] Infinite-dimensional port-Hamiltonian systems with a stationary interface
    Kilian, Alexander
    Maschke, Bernhard
    Mironchenko, Andrii
    Wirth, Fabian
    EUROPEAN JOURNAL OF CONTROL, 2025, 82
  • [42] Boundary controlled irreversible port-Hamiltonian systems
    Ramirez, Hector
    Le Gorrec, Yann
    Maschke, Bernhard
    CHEMICAL ENGINEERING SCIENCE, 2022, 248
  • [43] Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
    Guenther, Michael
    Jacob, Birgit
    Totzeck, Claudia
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (04) : 957 - 977
  • [44] Commutator-based operator splitting for linear port-Hamiltonian systems
    Moench, Marius
    Marheineke, Nicole
    APPLIED NUMERICAL MATHEMATICS, 2025, 210 : 25 - 38
  • [45] Observer-based boundary control of distributed port-Hamiltonian systems
    Toledo, Jesus
    Wu, Yongxin
    Ramirez, Hector
    Le Gorrec, Yann
    AUTOMATICA, 2020, 120 (120)
  • [46] Optimal control of port-Hamiltonian systems: A continuous-time learning approach
    Koelsch, Lukas
    Soneira, Pol Jane
    Strehle, Felix
    Hohmann, Soeren
    AUTOMATICA, 2021, 130
  • [47] State feedback regulation on port-Hamiltonian systems: a convex based approach
    Nicholls, Felipe M.
    Barbosa, Karina A.
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION/XXIII CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (ICA-ACCA), 2018,
  • [48] On the flat representation for a particular class of port-Hamiltonian systems
    Zafeiratou, I
    Prodan, I
    Lefevre, L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 13143 - 13148
  • [49] Distributed Control for Infinite Dimensional Port-Hamiltonian Systems
    Macchelli, Alessandro
    IFAC PAPERSONLINE, 2021, 54 (19): : 52 - 57
  • [50] Asymptotic stability of port-hamiltonian systems with constant inputs
    Cai, Liangcheng
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (02) : 227 - 235