We introduce a family of discrete-time lossless input-state-output port-Hamiltonian systems based on numerical time integration with symplectic collocation schemes. For systems with non-zero input, symplecticity extends to the conservation of a discrete energy balance, based on which a discrete-time Dirac structure is defined. Using Gauss-Legendre collocation, the corresponding quadrature formula allows to quantify the discretization error for the supplied energy. On a linear example, backward error analysis and numerical experiments are performed in order to illustrate the accuracy of the resulting structure-preserving integration schemes. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
机构:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, FranceUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France
Maschke, Bernhard
Philipp, Friedrich
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Ilmemau, Inst Math, Ilmemau, GermanyUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France
Philipp, Friedrich
Schaller, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Ilmemau, Inst Math, Ilmemau, GermanyUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France
Schaller, Manuel
Worthmann, Karl
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Ilmemau, Inst Math, Ilmemau, GermanyUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France
Worthmann, Karl
Faulwasser, Timm
论文数: 0引用数: 0
h-index: 0
机构:
TU Dortmund Univ, Inst Energy Syst Energy Efficiency & Energy Econ, Dortmund, GermanyUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, LAGEPP,UMR 5007, Lyon, France