Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation

被引:10
|
作者
Kotyczka, Paul [1 ]
Lefevre, Laurent [2 ]
机构
[1] Tech Univ Munich, Dept Mech Engn, Chair Automat Control, Boltzmannstr 15, D-8570 Garching, Germany
[2] Univ Grenoble Alpes, LCIS, 50 Rue Barthelemy de Laffemas, F-26902 Valence, France
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 03期
关键词
Port-Hamiltonian systems; Dirac structures; discrete-time systems; geometric numerical integration; symplectic methods;
D O I
10.1016/j.ifacol.2018.06.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a family of discrete-time lossless input-state-output port-Hamiltonian systems based on numerical time integration with symplectic collocation schemes. For systems with non-zero input, symplecticity extends to the conservation of a discrete energy balance, based on which a discrete-time Dirac structure is defined. Using Gauss-Legendre collocation, the corresponding quadrature formula allows to quantify the discretization error for the supplied energy. On a linear example, backward error analysis and numerical experiments are performed in order to illustrate the accuracy of the resulting structure-preserving integration schemes. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:125 / 130
页数:6
相关论文
共 50 条
  • [31] Implicit and explicit representations of continuous-time port-Hamiltonian systems
    Castanos, Fernando
    Gromov, Dmitry
    Hayward, Vincent
    Michalska, Hannah
    SYSTEMS & CONTROL LETTERS, 2013, 62 (04) : 324 - 330
  • [32] Conditions on shifted passivity of port-Hamiltonian systems
    Monshizadeh, Nima
    Monshizadeh, Pooya
    Ortega, Romeo
    van der Schaft, Arjan
    SYSTEMS & CONTROL LETTERS, 2019, 123 : 55 - 61
  • [33] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222
  • [34] Geometric spatial reduction for port-Hamiltonian systems
    Ngoc Minh Trang Vu
    Lefevre, Laurent
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2019, 125 : 1 - 8
  • [35] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60
  • [36] Learning port-Hamiltonian Systems-Algorithms
    Salnikov, V.
    Falaize, A.
    Lozienko, D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 126 - 134
  • [37] Port-Hamiltonian Systems: Structure Recognition and Applications
    Salnikov, V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 197 - 201
  • [38] A port-Hamiltonian approach to modeling the structural dynamics of complex systems
    Warsewa, Alexander
    Boehm, Michael
    Sawodny, Oliver
    Tarin, Cristina
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 1528 - 1546
  • [39] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452
  • [40] Exergetic port-Hamiltonian systems: modelling basics
    Lohmayer, Markus
    Kotyczka, Paul
    Leyendecker, Sigrid
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) : 489 - 521