NeuroMark: An automated and adaptive ICA based pipeline to identify reproducible fMRI markers of brain disorders

被引:171
作者
Du, Yuhui [1 ,2 ]
Fu, Zening [2 ]
Sui, Jing [2 ,3 ,4 ,5 ]
Gao, Shuang [3 ,4 ,5 ,6 ]
Xing, Ying [1 ]
Lin, Dongdong [2 ]
Salman, Mustafa [2 ,7 ]
Abrol, Anees [2 ]
Rahaman, Md Abdur [2 ]
Chen, Jiayu [2 ]
Hong, L. Elliot [8 ]
Kochunov, Peter [8 ]
Osuch, Elizabeth A. [9 ]
Calhoun, Vince D. [2 ,7 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Peoples R China
[2] Emory Univ, Georgia Inst Technol, Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30322 USA
[3] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[6] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan, Peoples R China
[7] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[8] Univ Maryland, Ctr Brain Imaging Res, Baltimore, MD 21201 USA
[9] London Hlth Sci Ctr, Lawson Hlth Res Inst, London, ON, Canada
基金
美国国家卫生研究院; 美国国家科学基金会; 加拿大健康研究院; 中国国家自然科学基金;
关键词
fMRI; Independent component analysis; Brain disorders; Reproducible and comparable biomarkers; NeuroMark; DYNAMIC FUNCTIONAL CONNECTIVITY; DEFAULT MODE NETWORK; INDEPENDENT COMPONENT ANALYSIS; COGNITIVE DYSMETRIA; BIPOLAR DISORDER; SINGLE-SUBJECT; SCHIZOPHRENIA; AUTISM; MRI; CLASSIFICATION;
D O I
10.1016/j.nicl.2020.102375
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Many mental illnesses share overlapping or similar clinical symptoms, confounding the diagnosis. It is important to systematically characterize the degree to which unique and similar changing patterns are reflective of brain disorders. Increasing sharing initiatives on neuroimaging data have provided unprecedented opportunities to study brain disorders. However, it is still an open question on replicating and translating findings across studies. Standardized approaches for capturing reproducible and comparable imaging markers are greatly needed. Here, we propose a pipeline based on the priori-driven independent component analysis, NeuroMark, which is capable of estimating brain functional network measures from functional magnetic resonance imaging (fMRI) data that can be used to link brain network abnormalities among different datasets, studies, and disorders. NeuroMark automatically estimates features adaptable to each individual subject and comparable across datasets/studies/disorders by taking advantage of the reliable brain network templates extracted from 1828 healthy controls as guidance. Four studies including 2442 subjects were conducted spanning six brain disorders (schizophrenia, autism spectrum disorder, mild cognitive impairment, Alzheimer's disease, bipolar disorder, and major depressive disorder) to evaluate validity of the proposed pipeline from different perspectives (replication of brain abnormalities, cross-study comparison, identification of subtle brain changes, and multi-disorder classification using identified biomarkers). Our results highlight that NeuroMark effectively identified replicated brain network abnormalities of schizophrenia across different datasets; revealed interesting neural clues on the overlap and specificity between autism and schizophrenia; demonstrated brain functional impairments present to varying degrees in mild cognitive impairments and Alzheimer's disease; and captured biomarkers that achieved good performance in classifying bipolar disorder and major depressive disorder.
引用
收藏
页数:19
相关论文
共 84 条
  • [21] Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia
    Cosgrove, Victoria E.
    Suppes, Trisha
    [J]. BMC MEDICINE, 2013, 11
  • [22] Quality performance metrics in multivariate classification methods for qualitative analysis
    Cuadros-Rodriguez, Luis
    Perez-Castano, Estefania
    Ruiz-Samblas, Cristina
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 80 : 612 - 624
  • [23] Toward the future of psychiatric diagnosis: the seven pillars of RDoC
    Cuthbert, Bruce N.
    Insel, Thomas R.
    [J]. BMC MEDICINE, 2013, 11
  • [24] Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
    Damaraju, E.
    Allen, E. A.
    Belger, A.
    Ford, J. M.
    McEwen, S.
    Mathalon, D. H.
    Mueller, B. A.
    Pearlson, G. D.
    Potkin, S. G.
    Preda, A.
    Turner, J. A.
    Vaidya, J. G.
    van Erp, T. G.
    Calhoun, V. D.
    [J]. NEUROIMAGE-CLINICAL, 2014, 5 : 298 - 308
  • [25] Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum
    de Lacy, N.
    Doherty, D.
    King, B. H.
    Rachakonda, S.
    Calhoun, V. D.
    [J]. NEUROIMAGE-CLINICAL, 2017, 15 : 513 - 524
  • [26] A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia
    Demirci, Oguz
    Clark, Vincent P.
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2008, 39 (04) : 1774 - 1782
  • [27] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361
  • [28] Dynamic functional connectivity impairments in early schizophrenia and clinical high-risk for psychosis
    Du, Yuhui
    Fryer, Susanna L.
    Fu, Zening
    Lin, Dongdong
    Sui, Jing
    Chen, Jiayu
    Damaraju, Eswar
    Mennigen, Eva
    Stuart, Barbara
    Loewy, Rachel L.
    Mathalon, Daniel H.
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2018, 180 : 632 - 645
  • [29] Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data
    Du, Yuhui
    Lin, Dongdong
    Yu, Qingbao
    Sui, Jing
    Chen, Jiayu
    Rachakonda, Srinivas
    Adali, Tulay
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [30] Artifact removal in the context of group ICA: A comparison of single-subject and group approaches
    Du, Yuhui
    Allen, Elena A.
    He, Hao
    Sui, Jing
    Wu, Lei
    Calhoun, Vince D.
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (03) : 1005 - 1025