Crystallization and arrest mechanisms of model colloids

被引:25
作者
Haxton, Thomas K. [1 ]
Hedges, Lester O. [1 ,2 ]
Whitelam, Stephen [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
关键词
PROTEIN CRYSTAL NUCLEATION; MOLECULAR-DYNAMICS; PHASE-SEPARATION; DESIGN RULES; KINETICS; SIMULATIONS; TRANSITION; EVOLUTION; PATHWAYS; BEHAVIOR;
D O I
10.1039/c5sm01833a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed dynamic simulations of spheres with short-range attractive interactions for many values of interaction strength and range. Fast crystallization occurs in a localized region of this parameter space, but the character of crystallization pathways is not uniform within this region. Pathways range from one-step, in which a crystal nucleates directly from a gas, to two-step, in which substantial liquid-like clusters form and only subsequently become crystalline. Crystallization can fail because of slow nucleation from either gas or liquid, or because of dynamic arrest caused by strong interactions. Arrested states are characterized by the formation of networks of face-sharing tetrahedra that can be detected by a local common neighbor analysis.
引用
收藏
页码:9307 / 9320
页数:14
相关论文
共 66 条
  • [31] METROPOLIS MONTE-CARLO METHOD AS A NUMERICAL TECHNIQUE TO SOLVE THE FOKKER-PLANCK EQUATION
    KIKUCHI, K
    YOSHIDA, M
    MAEKAWA, T
    WATANABE, H
    [J]. CHEMICAL PHYSICS LETTERS, 1991, 185 (3-4) : 335 - 338
  • [32] Predicting the self-assembly of a model colloidal crystal
    Klotsa, Daphne
    Jack, Robert L.
    [J]. SOFT MATTER, 2011, 7 (13) : 6294 - 6303
  • [33] Ionic colloidal crystals of oppositely charged particles
    Leunissen, ME
    Christova, CG
    Hynninen, AP
    Royall, CP
    Campbell, AI
    Imhof, A
    Dijkstra, M
    van Roij, R
    van Blaaderen, A
    [J]. NATURE, 2005, 437 (7056) : 235 - 240
  • [34] Direct determination of phase behavior of square-well fluids
    Liu, HJ
    Garde, S
    Kumar, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (17)
  • [35] Liquid-solid transition in nuclei of protein crystals
    Lomakin, A
    Asherie, N
    Benedek, GB
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) : 10254 - 10257
  • [36] Colloidal Particles: Crystals, Glasses, and Gels
    Lu, Peter J.
    Weitz, David A.
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4, 2013, 4 : 217 - 233
  • [37] Theoretical evidence for a dense fluid precursor to crystallization
    Lutsko, JF
    Nicolis, G
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (04)
  • [38] Establishing the Design Rules for DNA-Mediated Colloidal Crystallization
    Macfarlane, Robert J.
    Jones, Matthew R.
    Senesi, Andrew J.
    Young, Kaylie L.
    Lee, Byeongdu
    Wu, Jinsong
    Mirkin, Chad A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (27) : 4589 - 4592
  • [39] Assembly and organization processes in DNA-directed colloidal crystallization
    Macfarlane, Robert J.
    Lee, Byeongdu
    Hill, Haley D.
    Senesi, Andrew J.
    Seifert, Soenke
    Mirkin, Chad A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (26) : 10493 - 10498
  • [40] Depletion force in colloidal systems
    Mao, Y
    Cates, ME
    Lekkerkerker, HNW
    [J]. PHYSICA A, 1995, 222 (1-4): : 10 - 24