Resonators with manipulated diffraction due to two- and three-dimensional intracavity photonic crystals

被引:21
|
作者
Peckus, M. [1 ]
Rogalskis, R. [1 ]
Andrulevicius, M. [2 ]
Tamulevicius, T. [2 ]
Guobiene, A. [2 ]
Jarutis, V. [1 ]
Sirutkaitis, V. [1 ]
Staliunas, K. [3 ,4 ]
机构
[1] Vilnius State Univ, Laser Res Ctr, LT-10222 Vilnius, Lithuania
[2] Kaunas Univ Technol, Inst Phys Elect, LT-50131 Kaunas, Lithuania
[3] Univ Politecn Cataluna, Dept Fis & Engn Nucl, Barcelona 08222, Spain
[4] ICREA, Barcelona 08010, Spain
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 03期
关键词
Fabry-Perot resonators; mirrors; photonic crystals; LIGHT;
D O I
10.1103/PhysRevA.79.033806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically and experimentally investigate the light dynamics in plane-mirror Fabry-Perot resonators filled by two-dimensional (2D) and three-dimensional (3D) photonic crystals. It has been predicted that diffraction of such resonators can be manipulated [K. Staliunas, M. Peckus, V. Sirutkaitis, Phys. Rev. A 76, 051803(R) (2007)]; we study the phenomenon here in detail. In particular, we show the hyperbolic shape angular transmission profiles in case of 2D photonic structure (obtained by one-dimensional modulation of the surface of the mirrors), and quadratic shape transmission profiles in case of 3D photonic structure (obtained by 2D modulation of the mirrors). We develop the theoretical-numerical description of the system using the scattering matrix method and compare numerical results following from the model with the experimental ones.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Fabrication of three-dimensional photonic crystals in quantum-dot-based materials
    Gu, Min
    Jia, Baohua
    Li, Jiafang
    Ventura, Michael James
    LASER & PHOTONICS REVIEWS, 2010, 4 (03) : 414 - 431
  • [32] Spectral element method for band structures of three-dimensional anisotropic photonic crystals
    Luo, Ma
    Liu, Qing Huo
    PHYSICAL REVIEW E, 2009, 80 (05):
  • [33] Fabrication and characterization of three-dimensional metallodielectric photonic crystals for infrared spectral region
    Dyachenko, P. N.
    Karpeev, S. V.
    Pavelyev, V. S.
    OPTICS COMMUNICATIONS, 2011, 284 (22) : 5381 - 5383
  • [34] Numerical simulations of localization of electromagnetic waves in two- and three-dimensional disordered media
    Sheikhan, Ameneh
    Tabar, M. Reza Rahimi
    Sahimi, Muhammad
    PHYSICAL REVIEW B, 2009, 80 (03)
  • [35] Two-Dimensional Photonic Crystals
    Chen, Cheng
    Dong, Zhiqiang
    Chen, Haowen
    Chen, Yang
    Zhu, Zhigang
    Shih, Weiheng
    PROGRESS IN CHEMISTRY, 2018, 30 (06) : 775 - 784
  • [36] Three-dimensional analysis of hexagonal structured photonic crystals using oblique coordinates
    Edelmann, Andre G.
    Helfert, Stefan F.
    OPTICAL AND QUANTUM ELECTRONICS, 2009, 41 (04) : 243 - 254
  • [37] Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers
    Fang, Yin
    Ni, Yongliang
    Leo, Sin-Yen
    Wang, Bingchen
    Basile, Vito
    Taylor, Curtis
    Jiang, Peng
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (42) : 23650 - 23659
  • [38] Interleaving two-dimensional lattices to create three-dimensional photonic bandgap structures
    Reynolds, AL
    Arnold, JM
    IEE PROCEEDINGS-OPTOELECTRONICS, 1998, 145 (06): : 436 - 440
  • [39] One-dimensional, two-dimensional, and three-dimensional photonic crystals fabricated with interferometric techniques on ultra fine grain silver halide emulsions
    Ulibarrena, M
    Carretero, L
    Acebal, P
    Madrigal, R
    Blaya, S
    Fimia, A
    PHOTONIC CRYSTAL MATERIALS AND NANOSTRUCTURES, 2004, 5450 : 76 - 85
  • [40] High-Q nanocavities in semiconductor-based three-dimensional photonic crystals
    Takahashi, S.
    Tajiri, T.
    Watanabe, K.
    Ota, Y.
    Iwamoto, S.
    Arakawa, Y.
    ELECTRONICS LETTERS, 2018, 54 (05) : 305 - 307