Fault diagnosis of rolling bearing's early weak fault based on minimum entropy de-convolution and fast Kurtogram algorithm

被引:31
作者
Wang, Hongchao [1 ]
Chen, Jin [1 ]
Dong, Guangming [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
关键词
Minimum entropy de-convolution; Fast Kurtogram algorithm; rolling bearing; early weak fault; fault diagnosis; EMPIRICAL MODE DECOMPOSITION; SPECTRAL KURTOSIS; WAVELET TRANSFORM; TRANSIENT FAULTS; DECONVOLUTION; SIGNALS; ENHANCEMENT; EXTRACTION; FILTER;
D O I
10.1177/0954406214564692
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The rolling bearing's early stage fault feature is very weak for reasons of the signal attenuation phenomenon between the fault source and the sensor collecting the fault signal and the interference of environment noise such as the rotor rotating frequency and its harmonics and so on. The feature extraction of rolling bearing's early weak fault is not only very important but also very hard. The minimum entropy de-convolution and Fast Kurtogram algorithm are combined in the paper for rolling bearing's early stage weak fault feature extraction. The effect of transmission path is de-convolved effectively, and the impulses are clarified using minimum entropy de-convolution technique firstly. Then the obtained signal by minimum entropy de-convolution is handled by the Fast Kurtogram algorithm and an optimal filter is established. At last the envelope de-modulation is applied on the filtered signal and better feature extraction result is obtained compared with the other methods such as wavelet transform, frequency slice wavelet transformation and ensemble empirical mode decomposition. The effectiveness and advantages of the proposed method are verified through simulation signal and experiment.
引用
收藏
页码:2890 / 2907
页数:18
相关论文
共 27 条
[1]   The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines [J].
Antoni, J ;
Randall, RB .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (02) :308-331
[2]   Cyclostationary modelling of rotating machine vibration signals [J].
Antoni, J ;
Bonnardot, F ;
Raad, A ;
El Badaoui, M .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (06) :1285-1314
[3]   The spectral kurtosis: a useful tool for characterising non-stationary signals [J].
Antoni, J .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (02) :282-307
[4]   Fast computation of the kurtogram for the detection of transient faults [J].
Antoni, Jerome .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (01) :108-124
[5]   Optimal filtering of gear signals for early damage detection based on the spectral kurtosis [J].
Combet, F. ;
Gelman, L. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (03) :652-668
[6]  
Dwyer R., 1983, ICASSP 83 IEEE INT C, V8, P607, DOI [10.1109/ICASSP.1983.1172264, DOI 10.1109/ICASSP.1983.1172264]
[7]   Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter [J].
Endo, H. ;
Randall, R. B. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (02) :906-919
[8]   Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition [J].
Guo, Wei ;
Tse, Peter W. ;
Djordjevich, Alexandar .
MEASUREMENT, 2012, 45 (05) :1308-1322
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]   Application of the EEMD method to rotor fault diagnosis of rotating machinery [J].
Lei, Yaguo ;
He, Zhengjia ;
Zi, Yanyang .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) :1327-1338