Impact of ALD grown passivation layers on silicon nitride based integrated optic devices for very-near-infrared wavelengths

被引:24
作者
Khanna, Amit [1 ,4 ]
Subramanian, Ananth Z. [1 ]
Hayrinen, Markus [2 ]
Selvaraja, Shankar [3 ]
Verheyen, Peter [3 ]
Van Thourhout, Dries [1 ]
Honkanen, Seppo [2 ]
Lipsanen, Harri [4 ]
Baets, Roel [1 ]
机构
[1] Univ Ghent, Ctr Nano & Biophoton, Ghent Univ Imec, Photon Res Grp, B-9000 Ghent, Belgium
[2] Univ Eastern Finland, Inst Photon, FI-80101 Joensuu, Finland
[3] IMEC, B-3001 Louvain, Belgium
[4] Aalto Univ, Sch Elect Engn, Dept Micro & Nanosci, Espoo 02150, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
CMOS-COMPATIBLE PLATFORM; WAVE-GUIDES; PROPAGATION LOSS; FABRICATION; FREQUENCY; LINE;
D O I
10.1364/OE.22.005684
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A CMOS compatible post-processing method to reduce optical losses in silicon nitride (Si3N4) integrated optical waveguides is demonstrated. Using thin layer atomic layer deposition (ALD) of aluminum oxide (Al2O3) we demonstrate that surface roughness can be reduced. A 40 nm thick Al2O3 layer is deposited by ALD over Si3N4 based strip waveguides and its influence on the surface roughness and the waveguide loss is studied. As a result, an improvement in the waveguide loss, from very high loss (60 dB/cm) to low-loss regime (similar to 5 dB/cm) is reported for a 220 nm x 500 nm Si3N4 wire at 900 nm wavelength. This opens prospects to implement very low loss waveguides. (C) 2014 Optical Society of America
引用
收藏
页码:5684 / 5692
页数:9
相关论文
共 17 条
[1]   Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition [J].
Alasaarela, T. ;
Korn, D. ;
Alloatti, L. ;
Saynatjoki, A. ;
Tervonen, A. ;
Palmer, R. ;
Leuthold, J. ;
Freude, W. ;
Honkanen, S. .
OPTICS EXPRESS, 2011, 19 (12) :11529-11538
[2]   Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line [J].
Daldosso, N ;
Melchiorri, M ;
Riboli, F ;
Girardini, M ;
Pucker, G ;
Crivellari, M ;
Bellutti, P ;
Lui, A ;
Pavesi, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (07) :1734-1740
[3]   Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J].
Ferdous, Fahmida ;
Miao, Houxun ;
Leaird, Daniel E. ;
Srinivasan, Kartik ;
Wang, Jian ;
Chen, Lei ;
Varghese, Leo Tom ;
Weiner, Andrew M. .
NATURE PHOTONICS, 2011, 5 (12) :770-776
[4]   Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals [J].
Ghosh, G .
OPTICS COMMUNICATIONS, 1999, 163 (1-3) :95-102
[5]   High confinement micron-scale silicon nitride high Q ring resonator [J].
Gondarenko, Alexander ;
Levy, Jacob S. ;
Lipson, Michal .
OPTICS EXPRESS, 2009, 17 (14) :11366-11370
[6]   Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties [J].
Gorin, A. ;
Jaouad, A. ;
Grondin, E. ;
Aimez, V. ;
Charette, P. .
OPTICS EXPRESS, 2008, 16 (18) :13509-13516
[7]   Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength [J].
Goykhman, Ilya ;
Desiatov, Boris ;
Levy, Uriel .
APPLIED PHYSICS LETTERS, 2010, 97 (08)
[8]   Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides [J].
Grillot, F ;
Vivien, L ;
Laval, S ;
Pascal, D ;
Cassan, E .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (07) :1661-1663
[9]   Ultrabroadband supercontinuum generation in a CMOS-compatible platform [J].
Halir, R. ;
Okawachi, Y. ;
Levy, J. S. ;
Foster, M. A. ;
Lipson, M. ;
Gaeta, A. L. .
OPTICS LETTERS, 2012, 37 (10) :1685-1687
[10]  
Hayrinen M., 2013, C ADV PHOT 2013 OSA