Tilings for Pisot beta numeration

被引:5
作者
Minervino, Milton [1 ]
Steiner, Wolfgang [2 ]
机构
[1] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[2] Univ Paris 07, CNRS UMR 7089, LIAFA, F-75205 Paris 13, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 04期
基金
奥地利科学基金会;
关键词
Beta-expansion; Pisot number; Tiling; Rauzy fractal; ATOMIC SURFACES; SYSTEMS; SUBSTITUTIONS; EXPANSIONS; NUMBERS; COINCIDENCE; BOUNDARY; SHIFTS;
D O I
10.1016/j.indag.2014.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a (non-unit) Pisot number beta, several collections of tiles are associated with beta-numeration. This includes an aperiodic and a periodic one made of Rauzy fractals, a periodic one induced by the natural extension of the beta-transformation and a Euclidean one made of integral beta-tiles. We show that all these collections (except possibly the periodic translation of the central tile) are tilings if one of them is a tiling or, equivalently, the weak finiteness property (W) holds. We also obtain new results on rational numbers with purely periodic beta-expansions; in particular, we calculate gamma(beta) for all quadratic beta with beta(2) = alpha beta + b, gcd(a, b) = 1. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:745 / 773
页数:29
相关论文
共 36 条
[1]   Rational numbers with purely periodic β-expansion [J].
Adamczewski, Boris ;
Frougny, Christiane ;
Siegel, Anne ;
Steiner, Wolfgang .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :538-552
[2]   A certain finiteness property of Pisot number systems [J].
Akiyama, S ;
Rao, H ;
Steiner, W .
JOURNAL OF NUMBER THEORY, 2004, 107 (01) :135-160
[3]   On the boundary of self affine tilings generated by Pisot numbers [J].
Akiyama, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (02) :283-308
[4]  
Akiyama S, 1998, NUMBER THEORY, P9
[5]   Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions [J].
Akiyama, Shigeki ;
Barat, Guy ;
Berthe, Valerie ;
Siegel, Anne .
MONATSHEFTE FUR MATHEMATIK, 2008, 155 (3-4) :377-419
[6]  
[Anonymous], 2003, London Mathematical Society Lecture Note Series
[7]  
[Anonymous], 1977, Series A et B
[8]  
[Anonymous], 2006, THESIS U BIELEFELD
[9]   Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to β-shifts [J].
Baker, Veronica ;
Barge, Marcy ;
Kwapisz, Jaroslaw .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (07) :2213-2248
[10]  
Barge M, 2005, CONTEMP MATH, V385, P89