BIAS-CORRECTED QUANTILE REGRESSION FORESTS FOR HIGH-DIMENSIONAL DATA
被引:0
|
作者:
Nguyen Thanh Tung
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Water Resources Univ, Hanoi, VietnamChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Nguyen Thanh Tung
[1
,4
]
Huang, Joshua Zhexue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Huang, Joshua Zhexue
[1
,2
]
论文数: 引用数:
h-index:
机构:
Thuy Thi Nguyen
[3
]
Khan, Imran
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Khan, Imran
[1
]
机构:
[1] Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Bias Correction;
Quantile Regression Forests;
High-Dimensional Data;
Random Forests;
Data mining;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The Quantile Regression Forest (QRF), a nonparametric regression method based on the random forests, has been proved to perform well in terms of prediction accuracy, especially for non-Gaussian conditional distributions. However, the method may have two kinds of bias when solving regression problems: bias in the feature selection stage and bias in solving the regression problem. In this paper, we propose a new bias-correction algorithm that uses bias correction based on the QRF. To correct the first kind of bias, we propose a new scheme for feature sampling that allows to select good features for growing trees. The first level QRF is built based on this. For the second kind of bias, the residual term of the first level QRF model is used as the response feature to train the second level QRF model for bias correction. The second level model is then used to compute bias-corrected predictions. In our experiments, the proposed algorithm dramatically reduces prediction errors and outperforms most of the existing regression random forests models for both synthetic and well-known real-world data sets.
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Tomita, Hiroaki
Fujisawa, Hironori
论文数: 0引用数: 0
h-index: 0
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
Nagoya Univ, Grad Sch Med, Dept Math Stat, Nagoya, Aichi, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Fujisawa, Hironori
Henmi, Masayuki
论文数: 0引用数: 0
h-index: 0
机构:
SOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
Inst Stat Math, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, JapanSOKENDAI, Sch Multidisciplinary Sci, Dept Stat Sci, Tokyo, Japan
机构:
Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
Nankai Univ, LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
Hou, Zhaohan
Ma, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
Nankai Univ, LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
Ma, Wei
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
Nankai Univ, LPMC, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, KLMDASR, LEBPS, Tianjin, Peoples R China
机构:
Calif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USACalif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USA
Ratnasingam, Suthakaran
Ning, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R ChinaCalif State Univ San Bernardino, Dept Math, San Bernardino, CA 92407 USA
机构:
Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, JapanHiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
Yanagihara, Hirokazu
Kamo, Ken-ichi
论文数: 0引用数: 0
h-index: 0
机构:
Sapporo Med Univ, Dept Liberal Arts & Sci, Chuo Ku, Sapporo, Hokkaido 0608543, JapanHiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
Kamo, Ken-ichi
Imori, Shinpei
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, JapanHiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
Imori, Shinpei
Satoh, Kenichi
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Dept Environmetr & Biometr, Res Inst Radiat Biol & Med, Minami Ku, Hiroshima 7348553, JapanHiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398626, Japan
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Guangdong, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Guangdong, Peoples R China
Jiang, Xuejun
Liang, Yakun
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Guangdong, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Guangdong, Peoples R China
Liang, Yakun
Wang, Haofeng
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaSouthern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Guangdong, Peoples R China