BIAS-CORRECTED QUANTILE REGRESSION FORESTS FOR HIGH-DIMENSIONAL DATA
被引:0
|
作者:
Nguyen Thanh Tung
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Water Resources Univ, Hanoi, VietnamChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Nguyen Thanh Tung
[1
,4
]
Huang, Joshua Zhexue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Huang, Joshua Zhexue
[1
,2
]
论文数: 引用数:
h-index:
机构:
Thuy Thi Nguyen
[3
]
Khan, Imran
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Khan, Imran
[1
]
机构:
[1] Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Bias Correction;
Quantile Regression Forests;
High-Dimensional Data;
Random Forests;
Data mining;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The Quantile Regression Forest (QRF), a nonparametric regression method based on the random forests, has been proved to perform well in terms of prediction accuracy, especially for non-Gaussian conditional distributions. However, the method may have two kinds of bias when solving regression problems: bias in the feature selection stage and bias in solving the regression problem. In this paper, we propose a new bias-correction algorithm that uses bias correction based on the QRF. To correct the first kind of bias, we propose a new scheme for feature sampling that allows to select good features for growing trees. The first level QRF is built based on this. For the second kind of bias, the residual term of the first level QRF model is used as the response feature to train the second level QRF model for bias correction. The second level model is then used to compute bias-corrected predictions. In our experiments, the proposed algorithm dramatically reduces prediction errors and outperforms most of the existing regression random forests models for both synthetic and well-known real-world data sets.
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Ren, Panpan
Liu, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Liu, Xu
Zhang, Xiao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong Shenzhen, Sch Data Sci, Shenzhen, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Zhang, Xiao
Zhan, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Publ Affairs, Hangzhou, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
Zhan, Peng
Qiu, Tingting
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R ChinaShanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USA
Inst Fiscal Studies, London, EnglandColumbia Univ, Dept Econ, New York, NY 10027 USA
Lee, Sokbae
Liao, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Econ, New Brunswick, NJ USAColumbia Univ, Dept Econ, New York, NY 10027 USA
Liao, Yuan
Seo, Myung Hwan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Econ, 1 Gwanak Ro, Seoul 151742, South KoreaColumbia Univ, Dept Econ, New York, NY 10027 USA
Seo, Myung Hwan
Shin, Youngki
论文数: 0引用数: 0
h-index: 0
机构:
Univ Technol Sydney, Econ Discipline Grp, Broadway, NSW, Australia
McMaster Univ, Dept Econ, Hamilton, ON, CanadaColumbia Univ, Dept Econ, New York, NY 10027 USA
机构:
NYU, Stern Sch Business, New York, NY 10012 USANYU, Stern Sch Business, New York, NY 10012 USA
Chen, Xi
Liu, Weidong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, MoE Key Lab Artificial Intelligence, Shanghai 200240, Peoples R ChinaNYU, Stern Sch Business, New York, NY 10012 USA
Liu, Weidong
Mao, Xiaojun
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R ChinaNYU, Stern Sch Business, New York, NY 10012 USA
Mao, Xiaojun
Yang, Zhuoyi
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Stern Sch Business, New York, NY 10012 USANYU, Stern Sch Business, New York, NY 10012 USA