BIAS-CORRECTED QUANTILE REGRESSION FORESTS FOR HIGH-DIMENSIONAL DATA
被引:0
|
作者:
Nguyen Thanh Tung
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Water Resources Univ, Hanoi, VietnamChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Nguyen Thanh Tung
[1
,4
]
Huang, Joshua Zhexue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Huang, Joshua Zhexue
[1
,2
]
论文数: 引用数:
h-index:
机构:
Thuy Thi Nguyen
[3
]
Khan, Imran
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R ChinaChinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
Khan, Imran
[1
]
机构:
[1] Chinese Acad Sci, SIAT, Shenzhen Key Lab High Performance Data Min, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
Bias Correction;
Quantile Regression Forests;
High-Dimensional Data;
Random Forests;
Data mining;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The Quantile Regression Forest (QRF), a nonparametric regression method based on the random forests, has been proved to perform well in terms of prediction accuracy, especially for non-Gaussian conditional distributions. However, the method may have two kinds of bias when solving regression problems: bias in the feature selection stage and bias in solving the regression problem. In this paper, we propose a new bias-correction algorithm that uses bias correction based on the QRF. To correct the first kind of bias, we propose a new scheme for feature sampling that allows to select good features for growing trees. The first level QRF is built based on this. For the second kind of bias, the residual term of the first level QRF model is used as the response feature to train the second level QRF model for bias correction. The second level model is then used to compute bias-corrected predictions. In our experiments, the proposed algorithm dramatically reduces prediction errors and outperforms most of the existing regression random forests models for both synthetic and well-known real-world data sets.
机构:
Sungkyunkwan Univ, Dept Stat, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea
Lee, Eun Ryung
Park, Seyoung
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Stat, Seoul 03063, South KoreaSungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea
Park, Seyoung
Lee, Sang Kyu
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
NCI, Biostat Branch, Bethesda, MD 20892 USASungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea
Lee, Sang Kyu
Hong, Hyokyoung G.
论文数: 0引用数: 0
h-index: 0
机构:
NCI, Biostat Branch, Bethesda, MD 20892 USASungkyunkwan Univ, Dept Stat, Seoul 03063, South Korea