Function characterizations via commutators of Hardy operator

被引:3
作者
Lu, Shanzhen [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy operator; commutator; central function space; P-ADIC HARDY; MORREY SPACES; INTEGRAL-OPERATORS; CAMPANATO SPACES; COMPACTNESS; INEQUALITIES; BOUNDEDNESS; TRANSFORMS; REGULARITY; CONSTANTS;
D O I
10.1007/s11464-021-0894-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a summary of the research on the characterizations of central function spaces by the author and his collaborators in the past ten years. More precisely, the author gives some characterizations of central Campanato spaces via the boundedness and compactness of commutators of Hardy operator.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 57 条
[1]   Morrey spaces in harmonic analysis [J].
Adams, David R. ;
Xiao, Jie .
ARKIV FOR MATEMATIK, 2012, 50 (02) :201-230
[2]   REGULARITY OF MORREY COMMUTATORS [J].
Adams, David R. ;
Xiao, Jie .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (09) :4801-4818
[3]  
Alvarez J., 2000, Collect. Math., V51, P1
[4]   WEIGHTED WEAK TYPE HARDY INEQUALITIES WITH APPLICATIONS TO HILBERT-TRANSFORMS AND MAXIMAL FUNCTIONS [J].
ANDERSEN, KF ;
MUCKENHOUPT, B .
STUDIA MATHEMATICA, 1982, 72 (01) :9-26
[5]   ON THE BOUNDEDNESS AND COMPACTNESS OF OPERATORS OF HANKEL TYPE [J].
BEATROUS, F ;
LI, SY .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) :350-379
[6]   W(P)(1,2) SOLVABILITY FOR THE CAUCHY-DIRICHLET PROBLEM FOR PARABOLIC EQUATIONS WITH VMO COEFFICIENTS [J].
BRAMANTI, M ;
CERUTTI, MC .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1735-1763
[7]  
Campanato S, 1963, ANN SC NORM SUPER PI, V17, P173
[8]   A NOTE ON COMMUTATORS [J].
CHANILLO, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :7-16
[9]   Compactness of Commutators for Singular Integrals on Morrey Spaces [J].
Chen, Yanping ;
Ding, Yong ;
Wang, Xinxia .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (02) :257-281
[10]   Compactness of the commutators of parabolic singular integrals [J].
Chen YanPing ;
Ding Yong .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (10) :2633-2648