GAP PROBABILITY AT THE HARD EDGE FOR RANDOM MATRIX ENSEMBLES WITH POLE SINGULARITIES IN THE POTENTIAL

被引:8
作者
Dai, Dan [1 ]
Xu, Shuai-Xia [2 ]
Zhang, Lun [3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Inst Francochinois Energie Nucl, Guangzhou 510275, Guangdong, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
unitary ensembles; singular potentials; gap probability; asymptotics; Painleve and coupled Painleve equations; Riemann Hilbert problem; Deift Zhou steepest descent analysis; LEVEL-SPACING DISTRIBUTIONS; RIEMANN-HILBERT APPROACH; TIME-DELAY MATRIX; FREDHOLM DETERMINANTS; ORTHOGONAL POLYNOMIALS; STRONG ASYMPTOTICS; PAINLEVE-II; BESSEL; BEHAVIOR; MODELS;
D O I
10.1137/17M1153704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Fredholm determinant of an integrable operator acting on the interval (0, s) whose kernel is constructed out of the Psi-function associated with a hierarchy of higher order analogues to the Painleve III equation. This Fredholm determinant describes the critical behavior of the eigenvalue gap probability at the hard edge of unitary invariant random matrix ensembles perturbed by poles of order k in a certain scaling regime. Using the Riemann-Hilbert method, we obtain the large s asymptotics of the Fredholm determinant. Moreover, we derive a Painleve type formula of the Fredholm determinant, which is expressed in terms of an explicit integral involving a solution to a coupled Painleve III system.
引用
收藏
页码:2233 / 2279
页数:47
相关论文
共 48 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables
[2]   Singular-potential random-matrix model arising in mean-field glassy systems [J].
Akemann, Gernot ;
Villamaina, Dario ;
Vivo, Pierpaolo .
PHYSICAL REVIEW E, 2014, 89 (06)
[3]  
[Anonymous], ARXIV170907365
[4]  
[Anonymous], STUD APPL M IN PRESS
[5]  
[Anonymous], HANKEL DETERMINANT G
[6]  
[Anonymous], 1999, Courant Lecture Notes in Mathematics
[7]  
[Anonymous], 2010, Handbook of Mathematical Functions
[8]  
[Anonymous], INT MATH RE IN PRESS
[9]  
[Anonymous], LECT NOTES PHYS
[10]  
[Anonymous], ARXIV170806480