Multivariate Functional Halfspace Depth

被引:92
作者
Claeskens, Gerda [1 ]
Hubert, Mia [2 ]
Slaets, Leen [3 ]
Vakili, Kaveh [2 ]
机构
[1] Katholieke Univ Leuven, ORSTAT, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[3] EORTC, Brussels, Belgium
关键词
Functional data; Multivariate data; Statistical depth; Time warping; MAXIMUM DEPTH; CLASSIFICATION; CONTOURS;
D O I
10.1080/01621459.2013.856795
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article defines and studies a depth for multivariate functional data. By the multivariate nature and by including a weight function, it acknowledges important characteristics of functional data, namely differences in the amount of local amplitude, shape, and phase variation. We study both population and finite sample versions. The multivariate sample of curves may include warping functions, derivatives, and integrals of the original curves for a better overall representation of the functional data via the depth. We present a simulation study and data examples that confirm the good performance of this depth function. Supplementary materials for this article are available online.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 49 条
[1]   Berge equilibrium: some recent results from fixed-point theorems [J].
Abalo, K ;
Kostreva, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) :624-638
[2]  
[Anonymous], 1999, CONVERGE PROBAB MEAS
[3]   Robust depth-based estimation in the time warping model [J].
Arribas-Gil, Ana ;
Romo, Juan .
BIOSTATISTICS, 2012, 13 (03) :398-414
[4]  
Ausubel Lawrence M, 1993, Econ. Theory, P99
[5]   Principal components for multivariate functional data [J].
Berrendero, J. R. ;
Justel, A. ;
Svarc, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (09) :2619-2634
[6]   Output-sensitive algorithms for Tukey depth and related problems [J].
Bremner, David ;
Chen, Dan ;
Iacono, John ;
Langerman, Stefan ;
Morin, Pat .
STATISTICS AND COMPUTING, 2008, 18 (03) :259-266
[7]  
Chen ZQ, 2002, ANN STAT, V30, P1737
[8]   The random Tukey depth [J].
Cuesta-Albertos, J. A. ;
Nieto-Reyes, A. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (11) :4979-4988
[9]   Robust estimation and classification for functional data via projection-based depth notions [J].
Cuevas, Antonio ;
Febrero, Manuel ;
Fraiman, Ricardo .
COMPUTATIONAL STATISTICS, 2007, 22 (03) :481-496
[10]   On the use of the bootstrap for estimating functions with functional data [J].
Cuevas, Antonio ;
Febrero, Manuel ;
Fraiman, Ricardo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) :1063-1074