Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states

被引:11
|
作者
Xiao, Hailin [1 ,2 ,3 ]
Zhang, Zhongshan [4 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Guilin Univ Elect Technol, Sch Informat & Commun, Guilin 541004, Peoples R China
[4] Univ Sci & Technol Beijing, Ctr Convergence Networks & Ubiquitous Serv, Beijing Engn & Technol Res, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum secure communication; Quantum key distribution; Spatial multiplexing multiple-input multiple-out; Decoherence-free subspace; Orthogonal quantum states; INFORMATION; PRIVATE; COMMUNICATION; SECURITY; CAPACITY; CODES;
D O I
10.1007/s11128-016-1474-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, currentQKDtechnique restricts quantum secure communication to a lowbit rate. To improve theQKDbit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase log(2)(N-2 + 1) times than that of single-photon QKD system.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Multiple-input multiple-output system design of multidimensional orthogonal frequency division multiplexing system with coded direct index modulation
    An, Changyoung
    Ryu, Heung-Gyoon
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (03)
  • [32] Capacity of the multiple-input, multiple-output Poisson channel
    Haas, SM
    Shapiro, JH
    STOCHASTIC THEORY AND CONTROL, PROCEEDINGS, 2002, 280 : 155 - 168
  • [33] Polarization Characteristics of Multiple-Input Multiple-Output Channels
    Jiang, Lei
    Thiele, Lars
    Brylka, Armin
    Jaeckel, Stephan
    Jungnickel, Volker
    2008 IEEE 19TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2008, : 2110 - 2114
  • [34] Constrained detection for multiple-input multiple-output channels
    Cui, T
    Tellambura, C
    Wu, Y
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 199 - 203
  • [35] Digital prefiltering for multiple-input, multiple-output receivers
    Miller, CL
    Taylor, DP
    2001 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-10, CONFERENCE RECORD, 2001, : 1696 - 1699
  • [36] Multiple-input multiple-output radar aperture optimisation
    Rabideau, D. J.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (02): : 155 - 162
  • [37] Sampling and Reconstruction of Multiple-Input Multiple-Output Channels
    Lee, Dae Gwan
    Pfander, Goetz E.
    Pohl, Volker
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (04) : 961 - 976
  • [38] Multiple-Input Multiple-Output OFDM with Index Modulation
    Basar, Ertugrul
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (12) : 2259 - 2263
  • [39] Macrocell multiple-input multiple-output system analysis
    Shi, Gang
    Nehorai, Arye
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2006, 5 (05) : 1076 - 1085
  • [40] Throughput performance for Multiple-Input Multiple-Output networks
    Koshy, BJ
    Liberti, JC
    Triolo, AA
    2002 MILCOM PROCEEDINGS, VOLS 1 AND 2: GLOBAL INFORMATION GRID - ENABLING TRANSFORMATION THROUGH 21ST CENTURY COMMUNICATIONS, 2002, : 587 - 590