Exogenous Gibberellins Induce Wheat Spike Development under Short Days Only in the Presence of VERNALIZATION1

被引:83
作者
Pearce, Stephen [1 ]
Vanzetti, Leonardo S. [2 ,3 ]
Dubcovsky, Jorge [1 ,4 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] Inst Nacl Tecnol Agr Estn Expt Agr Marcos Juarez, Grp Biotecnol & Recursos Genet, RA-2580 Cordoba, Argentina
[4] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
基金
美国食品与农业研究所;
关键词
MADS-BOX GENES; PSEUDO-RESPONSE-REGULATOR; LOLIUM-TEMULENTUM; MOLECULAR CHARACTERIZATION; FLORAL INDUCTION; FLOWERING-TIME; TRANSCRIPTION; ARABIDOPSIS; PHOTOPERIOD; PROTEIN;
D O I
10.1104/pp.113.225854
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The activation of the meristem identity gene VERNALIZATION1 (VRN1) is a critical regulatory point in wheat (Triticum spp.) flowering. In photoperiod-sensitive wheat varieties, VRN1 is expressed only under long days (LDs), but mutants carrying deletions in a regulatory element in its promoter show VRN1 transcription and early spike development under short days (SDs). However, complete spike development is delayed until plants are transferred to LDs, indicating the existence of an additional regulatory mechanism dependent on LDs. We show here that exogenous gibberellin (GA) application accelerates spike development under SDs, but only in wheat lines expressing VRN1. The simultaneous presence of GA and VRN1 results in the up-regulation of the floral meristem identity genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY, whereas inhibition of GA biosynthesis with paclobutrazol precludes the LD induction of these two genes. The inductive role of GA on wheat flowering is further supported by the up-regulation of GA biosynthetic genes in the apices of plants transferred from SDs to LDs and in photoperiod-insensitive and transgenic wheat plants with increased FLOWERING LOCUS T transcription under SDs. The up-regulation of GA biosynthetic genes was not observed in the leaves of the same genetic stocks. Based on these observations, we propose a model in which FLOWERING LOCUS T is up-regulated in the leaves under LDs and is then transported to the shoot apical meristem, where it simultaneously induces the expression of VRN1 and GA biosynthetic genes, which are both required for the up-regulation of the early floral meristem genes SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-1 and LEAFY and the timely development of the wheat spike.
引用
收藏
页码:1433 / 1445
页数:13
相关论文
共 66 条
[1]   FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J].
Abe, M ;
Kobayashi, Y ;
Yamamoto, S ;
Daimon, Y ;
Yamaguchi, A ;
Ikeda, Y ;
Ichinoki, H ;
Notaguchi, M ;
Goto, K ;
Araki, T .
SCIENCE, 2005, 309 (5737) :1052-1056
[2]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[3]   Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots [J].
Ambrose, BA ;
Lerner, DR ;
Ciceri, P ;
Padilla, CM ;
Yanofsky, MF ;
Schmidt, RJ .
MOLECULAR CELL, 2000, 5 (03) :569-579
[4]   A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J].
Beales, James ;
Turner, Adrian ;
GriYths, Simon ;
Snape, John W. ;
Laurie, David A. .
THEORETICAL AND APPLIED GENETICS, 2007, 115 (05) :721-733
[5]   The Maize Transcription Factor KNOTTED1 Directly Regulates the Gibberellin Catabolism Gene ga2ox1 [J].
Bolduc, Nathalie ;
Hake, Sarah .
PLANT CELL, 2009, 21 (06) :1647-1658
[6]   Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize [J].
Bomblies, K ;
Wang, RL ;
Ambrose, BA ;
Schmidt, RJ ;
Meeley, RB ;
Doebley, J .
DEVELOPMENT, 2003, 130 (11) :2385-2395
[7]   Activation of a floral homeotic gene in Arabidopsis [J].
Busch, MA ;
Bomblies, K ;
Weigel, D .
SCIENCE, 1999, 285 (5427) :585-587
[8]   Wheat TILLING Mutants Show That the Vernalization Gene VRN1 Down-Regulates the Flowering Repressor VRN2 in Leaves but Is Not Essential for Flowering [J].
Chen, Andrew ;
Dubcovsky, Jorge .
PLOS GENETICS, 2012, 8 (12)
[9]   The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination [J].
Chiwocha, SDS ;
Cutler, AJ ;
Abrams, SR ;
Ambrose, SJ ;
Yang, J ;
Ross, ARS ;
Kermode, AR .
PLANT JOURNAL, 2005, 42 (01) :35-48
[10]   A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry:: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds [J].
Chiwocha, SDS ;
Abrams, SR ;
Ambrose, SJ ;
Cutler, AJ ;
Loewen, M ;
Ross, ARS ;
Kermode, AR .
PLANT JOURNAL, 2003, 35 (03) :405-417