Synchronization of extended systems from internal coherence

被引:8
作者
Duane, Gregory S. [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
基金
美国国家科学基金会;
关键词
chaos; cosmology; Liouville equation; partial differential equations; synchronisation; CHAOS;
D O I
10.1103/PhysRevE.80.015202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A condition for the synchronizability of a pair of extended systems governed by partial differential equations (PDEs), coupled through a finite set of variables, is commonly the existence of internal synchronization or internal coherence in each system separately. The condition was previously illustrated in a forced-dissipative system and is here extended to Hamiltonian systems using an example from particle physics. Full synchronization is precluded by Liouville's theorem. A form of synchronization weaker than "measure synchronization" is manifest as the positional coincidence of coherent oscillations ("breathers" or "oscillons") in a pair of coupled scalar field models in an expanding universe with a nonlinear potential, and does not occur with a variant of the model that does not exhibit oscillons.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Afraimovich V. S., 1986, Radiophysics and Quantum Electronics, V29, P795, DOI 10.1007/BF01034476
[2]   FATE OF FALSE VACUUM - SEMICLASSICAL THEORY [J].
COLEMAN, S .
PHYSICAL REVIEW D, 1977, 15 (10) :2929-2936
[3]   Synchronicity in predictive modelling: a new view of data assimilation [J].
Duane, G. S. ;
Tribbia, J. J. ;
Weiss, J. B. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (06) :601-612
[4]  
Duane GS, 2004, J ATMOS SCI, V61, P2149, DOI 10.1175/1520-0469(2004)061<2149:WATASC>2.0.CO
[5]  
2
[6]   Synchronized chaos in geophysical fluid dynamics [J].
Duane, GS ;
Tribbia, JJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4298-4301
[7]   Emergence of oscillons in an expanding background [J].
Farhi, E. ;
Graham, N. ;
Guth, A. H. ;
Iqbal, N. ;
Rosales, R. R. ;
Stamatopoulos, N. .
PHYSICAL REVIEW D, 2008, 77 (08)
[8]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[9]   Diffusive coupling, dissipation, and synchronization [J].
Hale J.K. .
Journal of Dynamics and Differential Equations, 1997, 9 (1) :1-52
[10]   Measure synchronization in coupled Hamiltonian systems [J].
Hampton, A ;
Zanette, DH .
PHYSICAL REVIEW LETTERS, 1999, 83 (11) :2179-2182