NiO@MnO2 core-shell composite microtube arrays for high-performance lithium ion batteries

被引:14
作者
Zhong, Yuan [1 ]
Huang, Huan [1 ]
Wang, Kai [1 ]
He, Zhishun [1 ]
Zhu, Shasha [1 ]
Chang, Ling [1 ]
Shao, Haibo [1 ]
Wang, Jianming [1 ]
Cao, Chu-nan [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
FACILE SYNTHESIS; NANOTUBE ARRAYS; NANOWIRE ARRAYS; HIGH-CAPACITY; FABRICATION; STORAGE; SUPERCAPACITORS; ELECTRODES; GRAPHENE; DESIGN;
D O I
10.1039/c6ra25463b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tubular array structures are very attractive for electrochemical energy storage and conversion systems due to their unique physicochemical properties. Herein, a NiO microtube array is fabricated via a facile oxalic acid corrosion method followed by heat treatment. A NiO@MnO2 core-shell composite microtube array is further achieved by the anodic electrodeposition using the NiO microtube array as substrate. When applied as self-supported electrode for lithium ion batteries (LIBs), the NiO@MnO2 core-shell composite microtube array electrode shows excellent lithium storage properties. The electrode delivers a reversible capacity of 510 mA h g(-1) at a high rate of 5.1 A g(-1), showing its good rate capability. In particular, a reversible capacity of 1573 mA h g(-1) is observed after 500 cycles at a current density of 0.53 A g(-1), demonstrating the superior cycling performance of the electrode. The electrodeposited MnO2 layer as a protective shell prevents the NiO microtubes from deformation during electrochemical cycling, responsible for the superior cycle stability of the NiO@MnO2 core-shell composite microtube array electrode. The prominent lithium storage performance of the composite microtube array electrode can be attributed to its unique structure characteristics.
引用
收藏
页码:4840 / 4847
页数:8
相关论文
共 38 条
[1]   Template-Free Synthesis of Self-Assembled Co3O4 Micro/Nanocrystals [J].
Amutha, R. ;
Akilandeswari, S. ;
Muruganandham, M. ;
Sillanpaa, Mika ;
Ahmmad, Bashir ;
Ohkubo, Takahiro .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (04) :3171-3179
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Vibrational spectroscopy of bulk and supported manganese oxides [J].
Buciuman, F ;
Patcas, F ;
Craciun, R ;
Zahn, DRT .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (01) :185-190
[4]   Manganese Oxide/Carbon Yolk-Shell Nanorod Anodes for High Capacity Lithium Batteries [J].
Cai, Zhengyang ;
Xu, Lin ;
Yan, Mengyu ;
Han, Chunhua ;
He, Liang ;
Hercule, Kalele Mulonda ;
Niu, Chaojiang ;
Yuan, Zefan ;
Xu, Wangwang ;
Qu, Longbing ;
Zhao, Kangning ;
Mai, Liqiang .
NANO LETTERS, 2015, 15 (01) :738-744
[5]   Ammonia assisted formation of tubular MOP-18 crystals [J].
Cao, Wei ;
Mao, Yiyin ;
Peng, Xinsheng .
CRYSTENGCOMM, 2014, 16 (47) :10916-10920
[6]   Ni(OH)2/NiO/Ni composite nanotube arrays for high-performance supercapacitors [J].
Dai, Xin ;
Chen, Dan ;
Fan, Huiqing ;
Zhong, Yuan ;
Chang, Ling ;
Shao, Haibo ;
Wang, Jianming ;
Zhang, Jianqing ;
Cao, Chu-nan .
ELECTROCHIMICA ACTA, 2015, 154 :128-135
[7]   Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J].
Fan, Hong Jin ;
Knez, Mato ;
Scholz, Roland ;
Nielsch, Kornelius ;
Pippel, Eckhard ;
Hesse, Dietrich ;
Zacharias, Margit ;
Goesele, Ulrich .
NATURE MATERIALS, 2006, 5 (08) :627-631
[8]   Rational design of hierarchical Ni embedded NiO hybrid nanospheres for high-performance lithium-ion batteries [J].
Feng, Na ;
Sun, Xiaolei ;
Yue, Hongwei ;
He, Deyan .
RSC ADVANCES, 2016, 6 (76) :72008-72014
[9]   Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage [J].
Hu, Han ;
Yu, Le ;
Gao, Xuehui ;
Lin, Zhan ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1480-1483
[10]   Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage [J].
Jiang, Jian ;
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yuan, Changzhou ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2012, 24 (38) :5166-5180