Dynamic instability of ring-stiffened conical thin-walled rocket fairing in supersonic gas stream

被引:8
作者
Chernobryvko, Marina V. [1 ]
Avramov, Konstantin V. [1 ,2 ]
Romanenko, Valentina N. [1 ]
Batutina, Tatiana J. [3 ]
Suleimenov, Ulan S. [4 ]
机构
[1] Natl Acad Sci Ukraine, Podgorny Inst Mech Engn, Dept Vibrat, UA-61046 Kharkov, Ukraine
[2] Natl Tech Univ, Kharkiv Polytech Inst, Dept Gas & Fluid Mech, Kharkov, Ukraine
[3] Design Off Yuzhnoe, Dnepropetrovsk, Ukraine
[4] M Auezov South Kazakhstan State Univ, Dept Architecture, Shimkent, Kazakhstan
关键词
Ring-stiffened conical shells; supersonic gas stream; assumed-modes method; shell spatial mode; FREE-VIBRATION; SHELL; FLUTTER; DESIGN;
D O I
10.1177/0954406215592171
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The assumed-modes method is applied to obtain the dynamical model of the ring-stiffened conical shells in a supersonic gas stream. The pressure acting on the shell is described by the piston theory. The displacements of the rings are functions of the shell displacements. The kinetic and the potential energies of the structure are obtained as the functions of the shell displacements. It is suggested the approach to calculate the shell spatial mode, when the shell dynamic stability is lost. The free vibrations of the structures with different numbers of the rings are analyzed. The loss of the structure dynamic stability is investigated.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 35 条
[1]  
Amabili M, 2008, NONLINEAR VIBRATIONS AND STABILITY OF SHELLS AND PLATES, P1, DOI 10.1017/CBO9780511619694
[2]   Nonlinear supersonic flutter of circular cylindrical shells [J].
Amabili, M ;
Pellicano, F .
AIAA JOURNAL, 2001, 39 (04) :564-573
[3]  
Amiro I.Ya., 1980, THEORY RIBBED SHELLS
[4]   Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical non-linearities in incompressible flow [J].
Avramov, K. V. ;
Strel'nikova, E. A. ;
Pierre, C. .
NONLINEAR DYNAMICS, 2012, 70 (02) :1335-1354
[5]  
Avramov KV, 2014, J VIBRAT CONTRL, V2014
[6]   DIVERGENCE INSTABILITY OF REINFORCED COMPOSITE CIRCULAR CYLINDRICAL-SHELLS [J].
BIRMAN, V .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1990, 26 (5-6) :571-579
[7]  
Bismarck-Nasr MN, 1992, APPL MECH REV, V45, P4
[8]  
Bolotin V.V., 1963, NONCONSERVATIVE PROB
[9]   Dynamics of shallow shells with geometrical nonlinearity interacting with fluid [J].
Breslavsky, I. D. ;
Strel'nikova, E. A. ;
Avramov, K. V. .
COMPUTERS & STRUCTURES, 2011, 89 (5-6) :496-506
[10]   Free linear vibrations of thin axisymmetric parabolic shells [J].
Chernobryvko, M. V. ;
Avramov, K. V. ;
Romanenko, V. N. ;
Batutina, T. J. ;
Tonkonogenko, A. M. .
MECCANICA, 2014, 49 (12) :2839-2845