On boundary value problems for impulsive fractional differential equations

被引:37
作者
Nyamoradi, Nemat [1 ]
Rodriguez-Lopez, Rosana [2 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
[2] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
Fractional differential equations; Boundary value problems; Impulsive problems; Solutions; Variational methods; PREDATOR-PREY MODEL; MULTIPLE SOLUTIONS; EXISTENCE; DYNAMICS;
D O I
10.1016/j.amc.2015.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we deal with the existence of solutions for the following impulsive fractional boundary value problem: {D-t(T)alpha((c)(0)D(t)(alpha)u(t)) + a(t)u(t) = f(t, u(t)), t not equal tj, a.e. t is an element of [0, T], Delta(D-t(T)alpha-1((c)(0)D(t)(alpha)u))(t(j)) = l(j)(t(t(j))), j = 1, 2, ... , n, u(0) = u(T) = 0, where alpha is an element of (1/2, 1], 0 = t(0) < t(1) < t(2) < ... < t(n) < t(n+1), T, f: [0, T] x R -> R and I-j : R -> R, j = 1, ... , n, are continuous functions, a is an element of C([0, T]) and Delta(D-t(T)alpha-1((c)(0)D(t)(alpha)u))(t(j)) = D-t(T)alpha-1((c)(0)D(t)(alpha)u)(t(j)(+)) - D-t(T)alpha-1((c)(0)D(t)(alpha)u)(t(j)), D-t(T)alpha-1 ((c)(0)D(t)(alpha)u)(t(j)(+)) = lim(t -> tj+) (D-t(T)alpha-1((c)(0)D(t)(alpha)u)(t)), D-t(T)alpha-1((c)(0)D(t)(alpha)u)(t(j)(-)) = lim(t -> tJ-)(D-t(T)alpha-1((c)(0)D(T)(alpha)u)(t)). By using critical point theory and variational methods, we give some new criteria to guarantee that the above-mentioned impulsive problems have at least one solution or infinitely many solutions. Some examples are also provided. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:874 / 892
页数:19
相关论文
共 66 条
[1]   EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER [J].
Ahmad, Bashir ;
Nieto, Juan J. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :981-993
[2]  
Anguraj A., 2010, FRACTIONAL CALCULUS, V13, P281
[3]  
[Anonymous], 2002, Appl. Anal. Vol.I
[4]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[5]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[6]  
[Anonymous], 2013, ELECT J DIFFER EQU
[7]  
[Anonymous], 1989, Series in Modern Applied Mathematics
[8]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[9]  
Bai C., 2012, ELECT J DIFFERENTIAL, V2012, P1
[10]   Controllability of fractional damped dynamical systems [J].
Balachandran, K. ;
Govindaraj, V. ;
Rivero, M. ;
Trujillo, J. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :66-73