Amorphous Cobalt Selenite Nanoparticles Decorated on a Graphitic Carbon Hollow Shell for High-Rate and Ultralong Cycle Life Lithium-Ion Batteries

被引:19
作者
Park, Gi Dae [1 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
基金
新加坡国家研究基金会;
关键词
metal selenite; graphitic carbon; conversion mechanism; amorphous material; lithium-ion battery; SUPERIOR ELECTROCHEMICAL PROPERTIES; TRANSITION-METAL OXIDES; ANODE MATERIAL; POROUS CARBON; HIGH-CAPACITY; COMPOSITE; PERFORMANCE; MICROSPHERES; NANOSPHERES; NANOFIBERS;
D O I
10.1021/acssuschemeng.0c05658
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal compounds with complex compositions forming heterointerfaces during cycling are under development on account of their excellent electrochemical properties. Herein, a new synthesis strategy is successfully developed for uniquely structured hollow carbon nanospheres comprising amorphous CoSeOx nanoparticles. A drop-and-dry infiltration method is applied to synthesize metal salt-infiltrated hollow carbon nanospheres, which are then posttreated with a metalloid Se under inert conditions to form CoSe2-C hollow nanospheres. Partial oxidation of these nanospheres under a 350 degrees C air atmosphere produces amorphous CoSeOx-C hollow nanospheres. The synthesis of amorphous metal selenite using conductive carbon is being reported here for the first time. Moreover, the conversion mechanism of amorphous CoSeOx is studied systemically via ex situ X-ray photoelectron spectroscopy, transmission electron microscopy, and electrochemical analyses. The amorphous characteristics and heterostructure formation and the graphitic carbon with a good electric conductivity contribute to the good electrochemical kinetic performance and ultrastable cyclic stability of CoSeOx-C. CoSeOx-C shows remarkable long-term cycle performance (799 mA h g(-1) for the 3000th cycle at a high current density of 5.0 A g(-1)) as well as remarkable rate capability (691 mA h g(-1)) even at 30 A g(-1).
引用
收藏
页码:17707 / 17717
页数:11
相关论文
共 58 条
[1]   Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles [J].
Ali, Ghulam ;
Patil, Supriya A. ;
Mehboob, Sheeraz ;
Ahmad, Mashkoor ;
Ha, Heung Yong ;
Kim, Hak-Sung ;
Chung, Kyung Yoon .
JOURNAL OF POWER SOURCES, 2019, 419 :229-236
[2]   Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries [J].
Balogun, Muhammad-Sadeeq ;
Yu, Minghao ;
Huan, Yongchao ;
Li, Cheng ;
Fang, Pingping ;
Li, Yi ;
Lu, Xihong ;
Tong, Yexiang .
NANO ENERGY, 2015, 11 :348-355
[3]   1D Sub-Nanotubes with Anatase/Bronze TiO2 Nanocrystal Wall for High-Rate and Long-Life Sodium-Ion Batteries [J].
Chen, Biao ;
Meng, Yuhuan ;
Xie, Fangxi ;
He, Fang ;
He, Chunnian ;
Davey, Kenneth ;
Zhao, Naiqin ;
Qiao, Shi-Zhang .
ADVANCED MATERIALS, 2018, 30 (46)
[4]   Boosting Sodium Storage of Fe1-xS/MoS2 Composite via Heterointerface Engineering [J].
Chen, Song ;
Huang, Shaozhuan ;
Hu, Junping ;
Fan, Shuang ;
Shang, Yang ;
Pam, Mei Er ;
Li, Xiaoxia ;
Wang, Ye ;
Xu, Tingling ;
Shi, Yumeng ;
Yang, Hui Ying .
NANO-MICRO LETTERS, 2019, 11 (01)
[5]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[6]   General Synthesis of Dual Carbon-Confined Metal Sulfides Quantum Dots Toward High-Performance Anodes for Sodium-Ion Batteries [J].
Chen, Ziliang ;
Wu, Renbing ;
Liu, Miao ;
Wang, Hao ;
Xu, Hongbin ;
Guo, Yanhui ;
Song, Yun ;
Fang, Fang ;
Yu, Xuebin ;
Sun, Dalin .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (38)
[7]   A Salt-Templated Strategy toward Hollow Iron Selenides-Graphitic Carbon Composite Microspheres with Interconnected Multicavities as High-Performance Anode Materials for Sodium-Ion Batteries [J].
Choi, Jae Hun ;
Park, Seung-Keun ;
Kang, Yun Chan .
SMALL, 2019, 15 (02)
[8]   Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions [J].
Cuan, Jing ;
Zhou, You ;
Zhang, Jian ;
Zhou, Tengfei ;
Liang, Gemeng ;
Li, Sean ;
Yu, Xuebin ;
Pang, Wei Kong ;
Guo, Zaiping .
ACS NANO, 2019, 13 (10) :11665-11675
[9]   Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries [J].
Cui, Dongming ;
Chen, Shasha ;
Han, Chang ;
Ai, Changchun ;
Yuan, Liangjie .
JOURNAL OF POWER SOURCES, 2016, 301 :87-92
[10]   A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries [J].
Edström, K ;
Herstedt, M ;
Abraham, DP .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :380-384