Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

被引:38
作者
Garcia-Rosales, C. [1 ,2 ]
Lopez-Ruiz, P. [1 ,2 ]
Alvarez-Martin, S. [1 ,2 ]
Calvo, A. [1 ,2 ]
Ordas, N. [1 ,2 ]
Koch, F. [3 ]
Brinkmann, J. [3 ]
机构
[1] Univ Navarra, CEIT, E-20018 San Sebastian, Spain
[2] Univ Navarra, Tecnun, E-20018 San Sebastian, Spain
[3] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
关键词
Tungsten alloys; Oxidation resistance; Armour material; Mechanical alloying; HIP; PLASMA-FACING MATERIAL; TUNGSTEN; FUSION;
D O I
10.1016/j.fusengdes.2014.04.057
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO3 in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 degrees C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr2O3 layer is found at the outer surface, below which a Cr2WO6 scale and Ti2CrO5 layers alternating with WO3 are formed. The Cr2O3, Cr2WO6 and Ti2CrO5 scales act as protective barriers against fast inward O2- diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 degrees C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2-3 orders of magnitude lower than for pure W. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1611 / 1616
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2009, HDB ACTIVATION DATA
[2]   On the oxidation mechanism of pure tungsten in the temperature range 600-800 °C [J].
Cifuentes, S. C. ;
Monge, M. A. ;
Perez, P. .
CORROSION SCIENCE, 2012, 57 :114-121
[3]  
International Centre for Diffraction Data (ICDD), 2013, POWD DIFFR FIL DAT
[4]   Self passivating W-based alloys as plasma facing material for nuclear fusion [J].
Koch, F. ;
Bolt, H. .
PHYSICA SCRIPTA, 2007, T128 :100-105
[5]   Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material [J].
Koch, F. ;
Brinkmann, J. ;
Lindig, S. ;
Mishra, T. P. ;
Linsmeier, Ch .
PHYSICA SCRIPTA, 2011, T145
[6]   Self passivating W-based alloys as plasma-facing material [J].
Koch, F. ;
Koeppl, S. ;
Bolt, H. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :572-574
[7]   Powder metallurgical processing of self-passivating tungsten alloys for fusion first wall application [J].
Lopez-Ruiz, P. ;
Ordas, N. ;
Iturriza, I. ;
Walter, M. ;
Gaganidze, E. ;
Lindig, S. ;
Koch, F. ;
Garcia-Rosales, C. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S219-S224
[8]   Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy [J].
Lopez-Ruiz, P. ;
Ordas, N. ;
Lindig, S. ;
Koch, F. ;
Iturriza, I. ;
Garcia-Rosales, C. .
PHYSICA SCRIPTA, 2011, T145
[9]  
Maisonnier D., 2005, Final Report EFDA-RP-RE-5.0
[10]  
Sarrazin P., 2008, MECH HIGH TEMPERATUR