Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2

被引:261
作者
Basu, Anamika [1 ]
Sarkar, Anasua [2 ]
Maulik, Ujjwal [2 ]
机构
[1] Gurudas Coll, Dept Biochem, Kolkata, W Bengal, India
[2] Jadavpur Univ, Comp Sci & Engn Dept, Kolkata, W Bengal, India
关键词
STRUCTURE VALIDATION; SWISS-MODEL; EMODIN; MOLPROBITY; RECEPTOR;
D O I
10.1038/s41598-020-74715-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Angiotensin converting enzyme 2 (ACE2) (EC:3.4.17.23) is a transmembrane protein which is considered as a receptor for spike protein binding of novel coronavirus (SARS-CoV2). Since no specific medication is available to treat COVID-19, designing of new drug is important and essential. In this regard, in silico method plays an important role, as it is rapid and cost effective compared to the trial and error methods using experimental studies. Natural products are safe and easily available to treat coronavirus affected patients, in the present alarming situation. In this paper five phytochemicals, which belong to flavonoid and anthraquinone subclass, have been selected as small molecules in molecular docking study of spike protein of SARS-CoV2 with its human receptor ACE2 molecule. Their molecular binding sites on spike protein bound structure with its receptor have been analyzed. From this analysis, hesperidin, emodin and chrysin are selected as competent natural products from both Indian and Chinese medicinal plants, to treat COVID-19. Among them, the phytochemical hesperidin can bind with ACE2 protein and bound structure of ACE2 protein and spike protein of SARS-CoV2 noncompetitively. The binding sites of ACE2 protein for spike protein and hesperidin, are located in different parts of ACE2 protein. Ligand spike protein causes conformational change in three-dimensional structure of protein ACE2, which is confirmed by molecular docking and molecular dynamics studies. This compound modulates the binding energy of bound structure of ACE2 and spike protein. This result indicates that due to presence of hesperidin, the bound structure of ACE2 and spike protein fragment becomes unstable. As a result, this natural product can impart antiviral activity in SARS CoV2 infection. The antiviral activity of these five natural compounds are further experimentally validated with QSAR study.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
Anand A. Zanwar, 2014, POLYPHENOLS HUMAN HL, P989, DOI [10.1016/B978-0-12-398456-2.00076-1, DOI 10.1016/B978-0-12-398456-2.00076-1]
[2]  
Betts M.J., 2007, BIOINFORMATICS GENET, V4, P311, DOI [DOI 10.1002/0470867302.CH14, 10.1002/0470867302.ch14]
[3]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10
[4]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[5]   Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways [J].
Dai, Jian-Ping ;
Wang, Qian-Wen ;
Su, Yun ;
Gu, Li-Ming ;
Zhao, Ying ;
Chen, Xiao-Xua ;
Chen, Cheng ;
Li, Wei-Zhong ;
Wang, Ge-Fei ;
Li, Kang-Sheng .
MOLECULES, 2017, 22 (10)
[6]   The spike protein of SARS-CoV - a target for vaccine and therapeutic development [J].
Du, Lanying ;
He, Yuxian ;
Zhou, Yusen ;
Liu, Shuwen ;
Zheng, Bo-Jian ;
Jiang, Shibo .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (03) :226-236
[7]   Bivariate statistics of wind farm support vessel motions while docking [J].
Gaidai, Oleg ;
Xu, Xiaosen ;
Naess, Arvid ;
Cheng, Yong ;
Ye, Renchuan ;
Wang, Junlei .
SHIPS AND OFFSHORE STRUCTURES, 2021, 16 (02) :135-143
[8]   SwissDock, a protein-small molecule docking web service based on EADock DSS [J].
Grosdidier, Aurelien ;
Zoete, Vincent ;
Michielin, Olivier .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W270-W277
[9]   Fast Docking Using the CHARMM Force Field with EADock DSS [J].
Grosdidier, Aurelien ;
Zoete, Vincent ;
Michielin, Olivier .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (10) :2149-2159
[10]   Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective [J].
Guex, Nicolas ;
Peitsch, Manuel C. ;
Schwede, Torsten .
ELECTROPHORESIS, 2009, 30 :S162-S173