On the interior regularity criteria and the number of singular points to the Navier-Stokes equations

被引:35
作者
Wang, Wendong [1 ]
Zhang, Zhifei [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2014年 / 123卷
关键词
SUITABLE WEAK SOLUTIONS; PROOF;
D O I
10.1007/s11854-014-0016-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations which allow the vertical part of the velocity to be large under the local scaling invariant norm. As an application, we improve Ladyzhenskaya-Prodi-Serrin's criterion and Escauriza-Seregin-verak's criterion. We also show that if a weak solution u satisfies parallel to u(.,t)parallel to L-P <= C(-t)((3-P)/2p) for some 3 < p < a, then the number of singular points is finite.
引用
收藏
页码:139 / 170
页数:32
相关论文
共 33 条
[1]  
[Anonymous], 2009, CLASSICAL MODERN FOU
[2]  
[Anonymous], 2002, DIFFERENTIAL INTEGRA
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]   Lower Bound on the Blow-up Rate of the Axisymmetric Navier-Stokes Equations [J].
Chen, Chiun-Chuan ;
Strain, Robert M. ;
Yau, Horng-Tzer ;
Tsai, Tai-Peng .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[5]   Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II [J].
Chen, Chiun-Chuan ;
Strain, Robert M. ;
Tsai, Tai-Peng ;
Yau, Horng-Tzer .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) :203-232
[6]   DIRECTION OF VORTICITY AND THE PROBLEM OF GLOBAL REGULARITY FOR THE NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FEFFERMAN, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (03) :775-789
[7]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[8]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[9]   On Vorticity Directions near Singularities for the Navier-Stokes Flows with Infinite Energy [J].
Giga, Yoshikazu ;
Miura, Hideyuki .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (02) :289-300
[10]   Localization and Geometric Depletion of Vortex-Stretching in the 3D NSE [J].
Grujic, Zoran .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) :861-870