Human cDC1s display constitutive activation of the UPR sensor IRE1

被引:5
作者
Garcia-Gonzalez, Paulina [1 ]
Fernandez, Dominique [1 ]
Gutierrez, Diane [2 ]
Parra-Cordero, Mauro [2 ]
Osorio, Fabiola [1 ]
机构
[1] Univ Chile, Fac Med, Inst Biomed Sci, Lab Immunol & Cellular Stress,Immunol Program, Santiago, Chile
[2] Univ Chile, Fetal Med Unit, Clin Hosp, Santiago, Chile
关键词
cDC1s; DC activation; IRE1; UPR; XBP1s; UNFOLDED-PROTEIN-RESPONSE; CELL-DIFFERENTIATION; DENDRITIC CELLS; DECAY; XBP-1;
D O I
10.1002/eji.202149774
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The intracellular mechanisms safeguarding DC function are of biomedical interest in several immune-related diseases. Type 1 conventional DCs (cDC1s) are prominent targets of immunotherapy typified by constitutive activation of the unfolded protein response (UPR) sensor IRE1. Through its RNase domain, IRE1 regulates key processes in cDC1s including survival, ER architecture and function. However, most evidence linking IRE1 RNase with cDC1 biology emerges from mouse studies and it is currently unknown whether human cDC1s also activate the enzyme to preserve cellular homeostasis. In this work, we report that human cDC1s constitutively activate IRE1 RNase in steady state, which is evidenced by marked expression of IRE1, XBP1s, and target genes, and low levels of mRNA substrates of the IRE1 RNase domain. On a functional level, pharmacological inhibition of the IRE1 RNase domain curtailed IL-12 and TNF production by cDC1s upon stimulation with TLR agonists. Altogether, this work demonstrates that activation of the IRE1/XBP1s axis is a conserved feature of cDC1s across species and suggests that the UPR sensor may also play a relevant role in the biology of the human lineage.
引用
收藏
页码:1069 / 1076
页数:8
相关论文
共 29 条
[1]   IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction [J].
Ashour, DiyaaElDin ;
Arampatzi, Panagiota ;
Pavlovic, Vladimir ;
Foerstner, Konrad U. ;
Kaisho, Tsuneyasu ;
Beilhack, Andreas ;
Erhard, Florian ;
Lutz, Manfred B. .
JCI INSIGHT, 2020, 5 (10)
[2]   Cross-Presenting XCR1+ Dendritic Cells as Targets for Cancer Immunotherapy [J].
Audsley, Katherine M. ;
McDonnell, Alison M. ;
Waithman, Jason .
CELLS, 2020, 9 (03)
[3]   Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity [J].
Balan, Sreekumar ;
Arnold-Schrauf, Catharina ;
Abbas, Abdenour ;
Couespel, Norbert ;
Savoret, Juliette ;
Imperatore, Francesco ;
Villani, Alexandra-Chloe ;
Thien-Phong Vu Manh ;
Bhardwaj, Nina ;
Dalod, Marc .
CELL REPORTS, 2018, 24 (07) :1902-+
[4]   mTOR Activation Promotes Plasma Cell Differentiation and Bypasses XBP-1 for Immunoglobulin Secretion [J].
Benhamron, Sandrine ;
Pattanayak, Shakti P. ;
Berger, Michael ;
Tirosh, Boaz .
MOLECULAR AND CELLULAR BIOLOGY, 2015, 35 (01) :153-166
[5]   Inhibition of Human Dendritic Cell ER Stress Response Reduces T Cell Alloreactivity Yet Spares Donor Anti-tumor Immunity [J].
Betts, Brian C. ;
Locke, Frederick L. ;
Sagatys, Elizabeth M. ;
Pidala, Joseph ;
Walton, Kelly ;
Menges, Meghan ;
Reff, Jordan ;
Saha, Asim ;
Djeu, Julie Y. ;
Kiluk, John V. ;
Lee, Marie C. ;
Kim, Jongphil ;
Kang, Chang Won ;
Tang, Chih-Hang Anthony ;
Frieling, Jeremy ;
Lynch, Conor C. ;
List, Alan ;
Rodriguez, Paulo C. ;
Blazar, Bruce R. ;
Conejo-Garcia, Jose R. ;
Del Valle, Juan R. ;
Hu, Chih-Chi Andrew ;
Anasetti, Claudio .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[6]   Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity [J].
Brown, Chrysothemis C. ;
Gudjonson, Herman ;
Pritykin, Yuri ;
Deep, Deeksha ;
Lavallee, Vincent-Philippe ;
Mendoza, Alejandra ;
Fromme, Rachel ;
Mazutis, Linas ;
Ariyan, Charlotte ;
Leslie, Christina ;
Pe'er, Dana ;
Rudensky, Alexander Y. .
CELL, 2019, 179 (04) :846-+
[7]   Human dendritic cell subsets: an update [J].
Collin, Matthew ;
Bigley, Venetia .
IMMUNOLOGY, 2018, 154 (01) :3-20
[8]   Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition) [J].
Cossarizza, Andrea ;
Chang, Hyun-Dong ;
Radbruch, Andreas ;
Abrignani, Sergio ;
Addo, Richard ;
Akdis, Muebeccel ;
Andrae, Immanuel ;
Andreata, Francesco ;
Annunziato, Francesco ;
Arranz, Eduardo ;
Bacher, Petra ;
Bari, Sudipto ;
Barnaba, Vincenzo ;
Barros-Martins, Joana ;
Baumjohann, Dirk ;
Beccaria, Cristian G. ;
Bernardo, David ;
Boardman, Dominic A. ;
Borger, Jessica ;
Boettcher, Chotima ;
Brockmann, Leonie ;
Burns, Marie ;
Busch, Dirk H. ;
Cameron, Garth ;
Cammarata, Ilenia ;
Cassotta, Antonino ;
Chang, Yinshui ;
Chirdo, Fernando Gabriel ;
Christakou, Eleni ;
Cicin-Sain, Luka ;
Cook, Laura ;
Corbett, Alexandra J. ;
Cornelis, Rebecca ;
Cosmi, Lorenzo ;
Davey, Martin S. ;
De Biasi, Sara ;
De Simone, Gabriele ;
del Zotto, Genny ;
Delacher, Michael ;
Di Rosa, Francesca ;
Di Santo, James ;
Diefenbach, Andreas ;
Dong, Jun ;
Doerner, Thomas ;
Dress, Regine J. ;
Dutertre, Charles-Antoine ;
Eckle, Sidonia B. G. ;
Eede, Pascale ;
Evrard, Maximilien ;
Falk, Christine S. .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2021, 51 (12) :2708-3145
[9]   Natural killer cells and dendritic epidermal γδ T cells orchestrate type 1 conventional DC spatiotemporal repositioning toward CD8+ T cells [J].
Ghilas, Sonia ;
Ambrosini, Marc ;
Cancel, Jean-Charles ;
Brousse, Carine ;
Masse, Marion ;
Lelouard, Hugues ;
Dalod, Marc ;
Crozat, Karine .
ISCIENCE, 2021, 24 (09)
[10]   XBP-1 and the unfolded protein response (UPR) [J].
Glimcher, Laurie H. ;
Lee, Ann-Hwee ;
Iwakoshi, Neal N. .
NATURE IMMUNOLOGY, 2020, 21 (09) :963-965