Faradaic Electrodes Open a New Era for Capacitive Deionization

被引:179
作者
Li, Qian [1 ,2 ,3 ]
Zheng, Yun [3 ]
Xiao, Dengji [3 ]
Or, Tyler [3 ]
Gao, Rui [4 ]
Li, Zhaoqiang [4 ]
Feng, Ming [4 ]
Shui, Lingling [1 ,2 ]
Zhou, Guofu [1 ,2 ]
Wang, Xin [1 ,2 ]
Chen, Zhongwei [3 ]
机构
[1] South China Normal Univ, South China Acad Adv Optoelect, Guangzhou 510631, Guangdong, Peoples R China
[2] South China Normal Univ, Int Acad Optoelect Zhaoqing, Guangzhou 510631, Guangdong, Peoples R China
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[4] Jilin Normal Univ, Minist Educ, Key Lab Funct Mat Phys & Chem, Changchun 130103, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
capacitive deionization; desalination; Faradaic electrodes; ion capture mechanisms; LAYERED DOUBLE HYDROXIDES; DIOXIDE/ACTIVATED CARBON COMPOSITE; HIGH DESALINATION CAPACITY; HIGH-PERFORMANCE ELECTRODE; MANGANESE OXIDE NANOWIRES; ION-EXCHANGE PROPERTIES; X-RAY-DIFFRACTION; WATER DESALINATION; LITHIUM RECOVERY; CHLORIDE-ION;
D O I
10.1002/advs.202002213
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capacitive deionization (CDI) is an emerging desalination technology for effective removal of ionic species from aqueous solutions. Compared to conventional CDI, which is based on carbon electrodes and struggles with high salinity streams due to a limited salt removal capacity by ion electrosorption and excessive co-ion expulsion, the emerging Faradaic electrodes provide unique opportunities to upgrade the CDI performance, i.e., achieving much higher salt removal capacities and energy-efficient desalination for high salinity streams, due to the Faradaic reaction for ion capture. This article presents a comprehensive overview on the current developments of Faradaic electrode materials for CDI. Here, the fundamentals of Faradaic electrode-based CDI are first introduced in detail, including novel CDI cell architectures, key CDI performance metrics, ion capture mechanisms, and the design principles of Faradaic electrode materials. Three main categories of Faradaic electrode materials are summarized and discussed regarding their crystal structure, physicochemical characteristics, and desalination performance. In particular, the ion capture mechanisms in Faradaic electrode materials are highlighted to obtain a better understanding of the CDI process. Moreover, novel tailored applications, including selective ion removal and contaminant removal, are specifically introduced. Finally, the remaining challenges and research directions are also outlined to provide guidelines for future research.
引用
收藏
页数:52
相关论文
共 50 条
  • [31] A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes
    Elewa, Mahmoud M.
    El Batouti, Mervette
    Al-Harby, Nouf F.
    MATERIALS, 2023, 16 (13)
  • [32] Capacitive deionization and electrosorption techniques with different electrodes for wastewater treatment applications
    Sivasubramanian, PratimaDevi
    Kumar, Mohanraj
    Kirankumar, V. S.
    Samuel, Melvin S.
    Dong, Cheng-Di
    Chang, Jih-Hsing
    DESALINATION, 2023, 559
  • [33] High speed capacitive deionization system with flow-through electrodes
    Guo, Lu
    Ding, Meng
    Yan, Dong
    Pam, Mei Er
    Vafakhah, Sareh
    Gu, Chengding
    Zhang, Wang
    Alvarado, Pablo Valdivia Y.
    Shi, Yumeng
    Yang, Hui Ying
    DESALINATION, 2020, 496
  • [34] Functionalized Graphene/Activated Carbon Composite Electrodes for Asymmetric Capacitive Deionization
    Lu Miao
    Liu Jian-Yun
    Cheng Jian
    Wang Shi-Ping
    Yang Jian-Mao
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (12) : 2263 - 2271
  • [35] Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes
    Lado, Julio J.
    Perez-Roa, Rodolfo E.
    Wouters, Jesse J.
    Tejedor-Tejedor, M. Isabel
    Anderson, Marc A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2014, 133 : 236 - 245
  • [36] Theory of water treatment by capacitive deionization with redox active porous electrodes
    He, Fan
    Biesheuvel, P. M.
    Bazant, Martin Z.
    Hatton, T. Alan
    WATER RESEARCH, 2018, 132 : 282 - 291
  • [37] Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization
    Han, Bing
    Cheng, Gong
    Wang, Yunkai
    Wang, Xiangke
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 364 - 384
  • [38] Capacitive deionization of ground water using carbon aerogel based electrodes
    Kohli, D. K.
    Bhartiya, Sushmita
    Singh, Ashish
    Singh, Rashmi
    Singh, M. K.
    Gupta, P. K.
    DESALINATION AND WATER TREATMENT, 2016, 57 (55) : 26871 - 26879
  • [39] Synthesis of Three-dimensional Graphene Electrodes and Their Applications in Capacitive Deionization
    Chen Chunyang
    Yu Fei
    Zhou Huiming
    Chen Junhong
    Ma Jie
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (12): : 2516 - 2522
  • [40] Activated carbon cloth electrodes for capacitive deionization: a neutron imaging study
    Butcher, Tim A.
    Prendeville, Lucy
    Rafferty, Aran
    Trtik, Pavel
    Boillat, Pierre
    Coey, J. M. D.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (04):